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Abstract  

Response surface methodology is widely used for 

developing, improving, and optimizing processes in 

various fields. In this article, we present a method for 

constructing second order rotatable designs in order to 

explore and optimize response surfaces based on a set of 

fraction of factorial designs. The designs achieve both 

properties of rotatability and estimation efficiency.  
We shall concentrate on the moment matrices and the 

related information surfaces based on the parameter 

subsystem of interest on the Kronecker model and their 

corresponding rotatable designs. The set of rotatable 

designs based on the central composite designs shall be 

presented. These designs shall be shown to be A-, D-, E-

and T-optimal. 
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surface, Parameter system of interest, Kronecker model, Moment 

matrices, Rotatable designs, Central Composite Designs. 

 

Introduction  
Response surface designs is an experimental field in which 

treatments are various combinations of different levels of the factors 

that are quantitative. Here the main objective of the experimenter is 

usually to estimate the absolute response or the parameters of a 

model providing the relationship between the response and the 

factors. In many experimental situations this relationship is a  

functional one. For example  may be represented as a suitable 

function  of the levels  of the  factors and,  

the set of parameters. A typical model may be of the form: 
 

( 1.1) 

 

where  represents the  observations with  

representing the level of the  factor ( ) in the 

 observation. The residual  measures the experimental error 

of the  observation. This particular function which describes  
the relationship in question is called the response surface. In practice 

this function is unknown as well as the set of the parameters and 

since the investigator attempts to approximate the response surface 

(the true functional relationship between response and factor levels), 

by using a derived polynomial equation, the object of the study now 

becomes the estimated response surface whose statistical properties 

are determined by the moment matrix 
 

(1.2) 
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for the Kronecker model which has all entries homogeneous.  

The information that a design with moment matrix  contains for 

the model response surface  is represented by the  
information surface given by  

(1.3) 
 
 

In terms of information matrices  , we have  
(Pukelsheim, 2006) (1.4) 

 
In this study we concentrate on the matrices (1.2) and (1.4) based on 

the parameter subsystem of interest on the Kronecker model and 

their corresponding rotatable designs. 
 
Response Surface Methodology  
Response surface methodology (RSM) is a collection of 

mathematical and statistical techniques that are useful for modeling 

and analysis of problems in which a response of interest is 

influenced by several variables and the objective is to optimize this 

response (Montgomery, 2001). RSM focuses on approximating the 

functional relationship between a given response and the factors 

involved as well as permitting a variety of experimental designs 

which allows one to achieve that estimate as efficiently and as 

economical as possible. (Clark and Williges, 1972). 

 
Second-order designs are used in response surface methodology as 

acceptable approximation of true responses (Myers, 1971).Cornel 

(1990) lists numerous examples of applications of mixture 

experiments and provides a thorough discussion of both theory and 

practice. Early work done by Scheffe’ (1958, 1963) suggested and 

analyzed canonical model forms when the regression function for the 

expected response is a polynomial of degree one, two or three. 
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In this study our focus is on the second degree Kronecker model 

suggested by Draper and Pukelsheim (1998) and as cited by Koech 

et.al. (2014): 
 

Definition 1: In an  second degree model , we 

 
take the regression function to be 
 

 

with  the ball of radius  in  and  

The moment matrix of a design  is denoted by (1.2) above. 
 
 
Thus the second-degree Kronecker model is 
 

(1.6) 

 

Where  the observed response under the experimental conditions 

, is taken to be a scalar random variable and 
 

 is an unknown  
parameter. (1.7) 
 
The Kronecker representation has several advantages such as a more 

compact notations, more convenient invariance properties, and the 

homogeneity of the regression terms (Draper and Pukelsheim ,1998 

and Prescott, et al ,2002) 
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Rotatable Second-Degree Moment Matrices  
In this study we make use of the following theorem as stated by 

Pukelsheim (2006) to check whether the constructed designs are 

second-order rotatable  

Theorem1. Let  be a symmetric 

 matrix. Then  is a rotatable 

second-degree moment matrix on the experimental domain if 

and only if for some 
 
 
 

 
We have 
 

 
(1.8) 

 
 
 

Where   

The moment matrix in (1.7) is attained by a design  if and 

only if  has all moments of  

(i) τ∫m()etdforallimi
'2
τµ=≤2  

 

(ii) ∫()()ettedforallijm
''22

τµ=≠≤  
 

τ m ij 22  
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(iii) 
 ' 4 

,  while  all  other  ()3etdforallimτµ=≤ 
 

 
τ
∫

m 
i 22  

 

    
 

 moments up to order 4 vanish. (1.9) 
 

 
The Design Problem  
In this study, we present a method for constructing second order 

rotatable designs in order to explore and optimize response surfaces 

based on fractional factorial designs. 
 

Optimality Criteria  
The ultimate purpose of any optimality criterion is to measure the 

largeness of a non-negative definite  matrix  where C is the 

subset of M. In this study, for each of the constructed second order 

rotatble design, the matrix  will be the information matrix based  
on the parameter subsystem of interest on the Kronecker model. 

Hence the optimality criteria includes the popular D-, A-, E-, and T-  
criteria, corresponding to the parameter values 0, -1, -∞, and 1, respectively as 

defined below. 
 

, ,     and  
(2.0) 

 
 

m +1 
for all   C   in   PD ,   the   set   of   positive 

2 
 

m +1    m +1 
definite ×    matrices. 

2 2 
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Efficiency  
The performance of designs comparing to the D-optimal design for 

model (1.6) are measured by the D-efficiency which is defined by: 
 

(2.1) 
 

 

The Fractional factorial designs sets  
The sets will be obtained from two-level fractional factorial designs. 

 

Definition 3: The design that assigns uniform weight to each of 

the vertices of is called the complete factorial 

design and  has  a  model matrix satisfying 
 
 
Pukelheim (2006, pg 190) stated that there exists a 

 for  in  such that its support 

size is bounded according to 

.  

For full parameter vector  we have  . and the bound 

becomes .  

The support size  of the complete factorial design quickly goes 

beyond the quadratic bound  

as  (Pukelsheim 2006, pg 391).  

 comprises of a  

fraction of the complete factorial design  in such a way that the 

associated model matrix  has orthogonal columns. This design has 
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a support size that does not outgrow the quadratic bound thus giving 

rise to an optimal design for .  
Construction of the designs 

 
We now illustrate the construction of the designs by considering an 

experiment with , with a design generated  
using the highest confounding interaction. This yields the following 

fractions: 

 

and  . (2.2) 

 
We now construct a set of rotatable designs based on (2.1) and the 

set of points S( ,0,0) usual call star points in the central composite 

designs (CCD). 

 
Central Composite Designs (CCD)  
One of the most popular and commonly used classes of experimental 

designs for fitting the second order model are the central composite 

designs introduced by Box and Wilson (1951).  
These designs are mixtures of three building blocks: cubes, stars and 

center points. (Pukelsheim 2006). 

Assuming  design variables, the CCD consists of:  

(i) The cube portion   which is an  full ( 

) or fractional ( ) factorial design of at 

least Resolution V with   replications. Each point is 

of the form  

  

(ii) The   axial points (star portion   ) with   

replications that takes one observation at each of the  
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vectors for for  some  star  radius 

.   

(iii) The center portion with replications which is the one 

point design in  .  

The  CCD  has  sample  size  .  
(2.3)  

Each of the three types of design points in a CCD plays different 

roles:  
a) The factorial points allow estimation of the first-order and 

interaction terms.  

b) The axial points allow estimation of the squared terms.   
c) The center points provide an internal estimate of pure error   

used to test for lack of fit and also contribute toward 

estimation of the squared terms.  
In the second-degree moment matrices for the CCD, the only non-

vanishing moments of the standardized design are: 
 

,                and  
(2.4) 

 

To maintain rotatability, the value of   depends on the number of  
experimental runs in the factorial portion of the central composite 

design. Rotatability condition entails 
 

 =3  . (2.5) 
 
Hence from (2.3) 

 
(2.6) 
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In this study we construct the set of rotatable central composite 

designs with the factorial portion comprising of design points 

generated from some supplementary difference sets of the form (2.1). 

The moment matrices and the related information surfaces based on 

the parameter subsystem of interest on the Kronecker model and 

their corresponding rotatable designs are obtained. The variations of 

the rotatable central composite designs are considered for three 

factors and D-, A-, E- and T- optimal values are obtained. The 

efficiency of the constructed designs is compared. 
 
The following procedure is followed to obtain a rotatable central 

composite design for this study:  

a) The cube portion (model matrix   of the difference set) is 

replicated 3 times i.e.  .  

b) The star portion is replicated once i.e.  .   
c) The replications of center point will be varied to obtain 

several variations of the central composite design with  

.   

d) For rotatability, the value of   is obtained using the 

condition (2.4).  
 

The set S1 is used to illustrate the method of construction of optimal 

designs. 
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 Design points for S1  

1 1 -1 -1 
1 -1 1 -1 
1 1 1 1 
1 -1 -1 1 

 

With reference to the  second-degree Kronecker model 

(1.6), a three-factor second-degree Kronecker model is of the form: 
 
 
 

(2.7) 
 

where  the response under experimental condition t is taken  
to be a real-valued random variable and  
θ=( 

 
an unknown parameter. All observations taken in an experiment are 

assumed to be uncorrelated and to have common unknown variance  

σ
2
 ε(0,∞). 

 
We use  the central composite  design  to fit this  model using  
conditions given in section 2.1 (i), (ii) and (iii) 

with   , ns =1 ,   giving 

 experimental points and .Thus for this set of 

conditions the design matrix X is given as 
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(t0 =1) (2.8) 

 
The corresponding moment matrix given in (1.8) is then obtained for 

m=3. 

 
 
Parameter subsystem of interest for three factors  

We  consider  the  Euclidean  unit  vectors  in    denoted  by 

 and the sets 

 

Let  be a  coefficient matrix such that: 

 for   
(2.9) 
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where 

 
 
 

 
and 

 
 
 

 
The parameter subsystem considered in the following can be written 

as 

 
 
 
 
 

 

(m=3)  

 
As is evident from equation (2.7), the Kronecker full parameter 

vector  is not estimable. The parameter system  is a 

maximal parameter system in model (2.7). 
 
The amount of information which the design T contains on the 

parameter system is captured by the information matrix (1.4) is 

obtained as follows:  
(2.10) 

 
 
 
where L is the left inverse of coefficient matrix K and is defined by 
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and the information matrices for  are  
linear transformation of moment matrices.  
Now the problem considered in this study is a specific case as 

follows. For m=3 we have 

 

 
. 

 
 
 
 

 
and from (1.4), (2.8), (2.9) and (2.10) the information matrix C is 

obtained . This is the moment matrix corresponding to the parameter 

system of interest. Hence the optimal values and their corresponding 

efficiencies are obtained by using (2.0) and (2.1) respectively. These 

are given in table 1 below. 

 

Full factorial design   
We now construct a second order rotatable central composite design 

where the cube portion is a full factorial design  

replicated . 
 
 
 
 
 
 
 
we have 
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under the following conditions: 
 

,  ,  and  in  which  from  (2.4) 
 
 

Tbe CCD with these conditions is compared with the CCD S1and 

the efficient values are given in Table 1. 
 
 
Rotatability:  

Using  we obtain the rotatable designs  for 

 factors. For each , rotatability  
conditions (1.8) are satisfied. Therefore the constructed designs are 

second order rotatable 

 
Optimality and efficiency  
We now present the set of rotatable designs based on the central 

composite designs and the corresponding D-, A-, T- and E- optimal 

values. 
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Table 1. 
 
    Smallest    

 

    Eigen Averag   
 

    value e-   
 

    criterion varianc   
 

  
Num 

  e   
 

  
Determ  

criterio   
 

  

ber 
  

Determina 
 

  inant 
(smallest 

n  
 

  of criterio  Trace nt 
 

  cent n positive  criterio efficiency 
 

  er  Eigen  n  
 

 

Des poin 
 

value) 
   

     
 

 ign ts      
 

  2 1.2986 0.0798 0.4459 1.9429 0.8224 
 

  1 1.2453 0.0439 0.2713 2.0376 0.8020 
 

  0 0.9152 0.0037 0.0255 2.1429 0.6139 
 

        
 

  2 1.5791 0.0866 0.4964 2.3924  
 

  1 1.5527 0.0636 0.3848 2.4653  
 

  0 1.4908 0.0394 0.2520 2.5424  
 

        
 

 
a) It can be observed that the optimal values  

 for the designs  

 are less than the corresponding optimal  

values for the design    but irrespective of the design, the   
optimal values increase with increasing replicates of the center 

points except for the trace criterion whose value decreases as the 

replicates for center points increase.  

b) For efficiency, this is obtained using the formula (2.1) 

For example   
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This means that the design  is 17.76% more efficient. 

Comparing the three designs, design  seems to be more  
efficient (38.61 %). This is a central composite design with no 

center points. We may therefore conclude that including or not 

including center points in a second-order rotatable central 

composite design does not affect the efficiency. 

 

Conclusion  
In this study, we have presented a method for constructing second 

order rotatable designs in order to explore and optimize response 

surfaces based on some class of supplementary difference sets. The 

constructed set of rotatable designs based on the central composite 

designs have achieved both properties of rotatability and estimation 

efficiency as shown by the results in relation to their moment 

matrices and the related information surfaces based on the parameter 

subsystem of interest on the Kronecker model. These designs have 

also proved to be A-, D-, E- and T-optimal. 
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