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ABSTRACT 

An eco-friendly bio-ethanol from biomass waste is an alternative to petroleum 

products which are becoming scarce due to increased demand and depletion of source 

besides their environmental pollution effects. Most studies on optimization of process 

variables using Response Surface Methodology exploit Central Composite Design yet 

other designs exist. Optimal designs have fewer trials employed with the aim of 

obtaining efficient designs for fitting reduced quadratic or higher order models. 

Efficiency as discriminating criteria allows comparison between any design and the 

best design. This study sought to apply a second order optimal rotatable design in 

four dimensions to the ethanol production through fermentation of pineapples peels 

using yeast. The D-, A-, E- and T-Optimal values of the general design with their 

corresponding relative efficiencies were obtained. The design was used to carry out 

an experiment in order to determine the effects of time, pH, temperature and 

concentration of substrate on ethanol yield during fermentation of pineapple peels. 

Finally the optimum settings of time, temperature, initial pH and substrate 

concentration that led to optimal yield of ethanol were determined. The coded values 

of a design constructed by Das and Narasimham were used to obtain a design matrix 

X which was then used to construct a moment matrix X/ X. The moment matrix was 

then utilized to determine the optimal values and the required efficiencies.  The ratio 

of the optimal value of the general design to the corresponding optimal variance of 

the optimal design was used as a measure of relative efficiency of the design. A 

second order model was fit into experimental data in order to study the effects of the 

process variables, and the optimization through response surface plots and analytical 

method. The D-, A-, E- and T-Optimal values were found to be 0.6796529, 

0.04104631, 0.002856958 and 1.135448 respectively, and the corresponding relative 

efficiencies were 98%,71.7%, 87.5% and 1% respectively. Normal probability plots 
and R-squared of 0.95 and Adjusted R-squared of 0.911 for E-optimal (most efficient 

with only 32 runs) design indicated the model fit the data well. An optimal yield of 

12.35g/L of ethanol realized after 54.35 hours at 4.96 levels of pH, 34.670C 

temperature and 28.03g/L of substrate concentration translated to 0.441g of ethanol 

per gram of substrate (roughly 86% of the theoretical yield of 0.511g ethanol per g of 

substrate) which compares well with findings from similar studies. The yield by E-

optimal design was slightly lower than that of general design by 0.040g/L. The design 

was found reliable in modeling, optimizing and studying effects of the factors to the 

processes of fermentation of pineapples peels for ethanol production. A comparison 

of these results and the result of rotatable design with four factors constructed using 

balanced incomplete block design when replications are more than three the number 

of times pairs of treatments occur together in the design is suggested in studying the 

effects of the four process variables on ethanol yield and optimization of the process 

using pineapple peels as feedstock. Study established the factor settings for optimal 

ethanol yield from pineapple peels. These wastes if not properly disposed can be a 

major source of pollution. A cheaper fuel than fossil fuel is provided while managing 

wastes. 
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CHAPTER ONE 

INTRODUCTION 

1.0 Overview 

This chapter contains background to the study which introduces the subject area of the 

study and the current situation, optimal designs for fitting second order models and 

rotatable designs constructed using balanced incomplete block designs. Statement of 

the problem, justification of the study, Scope of the study, objectives of the study 

constituting general objective and specific objectives and the Significance of the 

Study. 

1.1 Background of the Study  

1.1.1 Ethanol Production  

Ethanol is an attractive alternative fuel to fossil fuels since it is a renewable bio-based 

resource which is oxygenated, thereby providing the potentiality of reducing 

emissions in compression–ignition engines. Hansen et al., (2005), observed that the 

global fuel crises in the 1970s brought awareness amongst many Nations of their 

vulnerability to oil embargoes and shortages shifting focus on the development of 

alternative fuel sources with particular reference to the alcohols where a blend of 10% 

dry ethanol and unleaded gasoline known as E10 were commercially introduced into 

the US and continues to be marketed in the Midwestern states. The use of ethanol 

blended with diesel was a subject of research in the 1980s where studies showed that 

ethanol–diesel blends were technically acceptable for existing diesel engines. The 

relatively high cost of ethanol production at that time meant that the fuel could only 

be considered in cases of fuel shortages. But recently the economics have become 

much more favourable in ethanol production and it is able to compete with standard 

diesel. Consequently, there has been renewed interest in the ethanol–diesel blends 
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with particular emphasis on emissions reductions. According to Rattanapan et al., 

(2011) ethanol is easily adaptable to existing engines and it is a cleaner fuel with high 

octane rating than gasoline. Isaias et al., (2004) observed that ethanol is known to 

reduce green-house gases by between 86% to 90% .While Goettemoeller and 

Goettemoeller, (2007) reported that bioethanol is easily produced from cheap raw 

waste by products known as molasses of sugar industries from sugarcane and sugar 

beet. Wang et al., (2001) demonstrated that ethanol can be produced from Glycerol 

which is a major by-product of both soap manufacturing and biodiesel production 

industries by microbial fermentation and chemical syntheses. Molasses is a widely 

used substrate of bioethanol production since it is cheap and readily available and 

ready for conversion with little pre-treatments as compared to other starchy materials 

as all sugars are present in fermentable form  Razmovski and Vucurovic, (2011). The 

most widely used sugar for ethanol fermentation is blackstrap molasses which 

contains about 35 – 40 wt.% sucrose,15 – 20 wt.% invert sugar such as glucose and 

fructose, and 28 – 35 wt.% of non-sugar solids Osunkoya and Okwudinka, (2011). 

Basically, five steps are involved in ethanol production namely grinding, cooking, 

fermentation, distillation, and hydration. In each step, there are several ways to 

improve the quantity and quality of ethanol produced. Tropea et al., (2014) records 

that Pineapple wastes, comprise of fruit trimmings produced in huge amounts by 

canning industries and markets throughout the world and that Costa Rica is the main 

producer and exporter, with around 110,000 acres of land under pineapples plants. 

They further noted that 25% of the fresh pineapples harvested in Costa Rica is 

processed to make added value products such as pineapple juice, jelly and canned 

pineapple. Nearly 75% of the fruit processed in canneries results in peeled skin, 

core, and crown as the end waste products, which are not utilized and generally 
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discharged as a waste. The dry matter content in pineapple waste is around 10%, and 

is composed of about 96% organic and 4% inorganic matter. These wastes have a 

potential for recycling to get raw materials or for conversion into useful product of 

higher value, or even as raw material for other industries after biological treatment 

Abdullah, (2007).These materials exhibit both high biochemical oxygen demand 

(BOD) and chemical oxygen demand (COD) values Ban-Koffi & Han, (1990)giving 

rise to serious pollution problems if not properly disposed of, according to Tropea et 

al., (2014) Pineapple wastes are rich in intracellular sugars and plant cell walls which 

are composed mainly of cellulose, peptic substances and hemicelluloses. Generally, to 

obtain high quality and high yield of ethanol in ethanol industry, selection of 

fermentative yeast is very important. The most well-known and commercially 

significant yeasts that have been primarily used for bioethanol production are the 

related species and strains of Saccharomyces cerevisiae Chandel et al., (2007a).These 

organisms have long been utilized to ferment the sugars of rice, wheat, barley, and 

corn to produce alcoholic beverages and in the baking industry. Tsuyoshi et al., 

(2005), observed that one yeast cell can ferment approximately its own weight of 

glucose per hour and that Sugars from sugar cane, sugar beets, molasses, and fruits 

can be converted to ethanol directly. A number of factors like incubation temperature, 

molasses concentration and sugar tolerance of the yeast strain used in fermentation 

and incubation period are known to limit the production of ethanol in quality and 

quantity. The use of concentrated sugar substrate is one way of obtaining high ethanol 

yield during fermentation process. However, high substrate concentrations are 

inhibitory to fermentation due to the osmotic stress. The pH of the fermentation 

medium significantly affects the fermentation process according to Ergun and Ferda 

Mutlu, (2000) and Jones et al., (1981).The purpose of this study was to investigate the 
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potential of transforming such residues of pineapple wastes in particular the peels into 

ethanol after physical pre-treatment and fermentation of the resulting simple sugars 

using the Saccharomyces cerevisiae. Optimization of process variables which are 

known to affect the quantity of ethanol produced during fermentation was studied 

using response surface methodology (RSM) based on a second order optimal rotatable 

design constructed using balanced incomplete block design in four dimensions to 

estimate the number of runs and optimum conditions for four independent variables 

namely incubation time, temperature, initial pH and substrate concentration of the 

pineapple peels using yeast. 

1.1.2 Optimal Designs for Fitting Second Order Model  

Optimal designs are a class of experimental designs that are optimal with respect to 

some statistical criterion. These designs allow parameters to be estimated without bias 

and with minimum variance while a non-optimal design on the other hand requires a 

greater number of runs to estimate parameters with the same precision as an optimal 

design. Thus optimal designs reduce time and costs of carrying out experiments due 

reduced number of runs as well as increasing the precision with which the parameters 

are estimated. These designs also accommodate multiple type of factors such as 

process mixtures and discrete factors in addition to allowing design optimization 

when the design space is constrained, for example, when the mathematical process 

space contains factor settings that are practically infeasible e.g. due safety concerns. 

The most popular designs for fitting second order models is the Central Composite 

designs (CCD) which comprise of a 2𝑘 factorial or fractional factorial of resolution 𝑉 

with 𝑛𝐹 runs, 2𝑘 axial or star runs and 𝑛𝑐 center runs. The application of CCD arises 

through sequential experimentation when the 2𝑘 factorial has been used to fit a first 

order model and it exhibits lack of fit, axial runs are added to allow the quadratic 



5 
 

 
 

terms to be incorporated in the model. The CCD has two parameters that must be 

specified, namely the distance 𝛼  of the axial runs from the design center and the 

number of center points 𝑛𝑐.Since rotatability is a spherical property when the region 

of interest is a sphere (although it is not important to have exact rotatability to have a 

good design), the best choice of 𝛼 from a prediction variance viewpoint for CCD is to 

set  𝛼 = √𝑘. This design is a spherical CCD since it puts all the factorial and axial 

points on the surface of a sphere of radius √𝑘. When the region of interest is cuboidal 

rather than spherical, a useful variation of the CCD is the face centered central 

composite design (CCFD) in which 𝛼 = 1. This design locates the star or axial points 

on the centers of the face of the cube. The design is used since only three levels of 

each factor is required and in practice it is difficult to change factors levels however 

the design is not rotatable. The face centered central composite design does not 

require as many center points as the CCD although sometimes more centers are 

required to give a reasonable estimate of experimental error Montgomery, (2005). 

Optimal designs are the alternative when the experimental region is irregular due to factor 

levels constraints or when the experimenter has prior knowledge about the process being 

studied which may suggest a non-standard model where some higher order terms or some 

interaction terms between factors may not be included in the model or even when the 

process factors are categorical or an unusual sample size may be of importance due to 

cost or time considerations. A second order rotatable design in four dimensions 

constructed using balanced incomplete block designs when the number of replications 

(𝑟) are less than three the number of times (𝜆) pairs of treatments occur together in 

the design as put forward by Das and Narasimham, (1962) was applied. 
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1.2 Statement of the Problem 

The need for a cleaner environment in urban areas and the high cost of petroleum 

products which are becoming scarce due to unbalanced relation between supply and 

demand besides air pollution of sources has led to the research for other fuels to 

replace fossil fuels. An eco-friendly bio-ethanol produced from biomass waste is one 

such alternative fuel that can be used in petrol engines without modification and with 

the current fuelling infrastructure and it is easily applicable in present day combustion 

engine, as mixing with gasoline  Hansen et al., (2005).Combustion of ethanol results 

in relatively low emission of volatile organic compounds, carbon monoxide and 

nitrogen oxides. The emission and toxicity of ethanol are lower than those of fossil 

fuels such as petroleum and diesel Wyman and Hinman, (1990).Little in literature has 

been done in the use of second order rotatable design constructed using incomplete 

block designs in the optimization of process variables in almost all fields of study and 

their properties of optimality have not been documented yet this study has shown that 

this design is equally effective in modelling the effects of process variables 

considered as well as optimizing ethanol yield from pineapple peels. 

1.3 Justification of the Study  

Large scale farming of Pineapples by firms such as Kakuzi and Delmonte and small 

scale farming by surrounding communities in Thika and its environs results in huge 

quantities of Pineapple wastes produced by canning industries and market places as 

waste in the town posing serious environmental pollution problems and waste 

management challenge to the county government since these wastes exhibit both high 

biochemical oxygen demand (BOD) and chemical oxygen demand (COD) values 

which gives rise to serious pollution problems if not properly disposed. There is need 

to exploit these wastes fully for other good use. Choonut et al., (2014) observed that 
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Pineapple peel, a by-product of the pineapple processing industry, account for 29-

40% (w/w) of total pineapple weight and that after pretreatment with water and heat at 

1000C for 4 hours, 36.25±2.87% of cellulose was achieved from the peels therefore 

there is a great need to exploit these wastes in producing bioethanol since they are 

rich in cellulosic and non-cellulosic sugars for a cleaner environment and alternative 

fuel sources due to depletion of fossil fuel sources. Data from experiments with levels 

of combinations of one or more factors as treatments are normally investigated to 

compare levels effects of the factors and also their interactions. But these 

investigations do not give information regarding the possible effects of the 

intervening levels of the factors or their combinations at treatment combinations not 

tried in the experiment. Hence there is need to carry out investigations with two aims: 

namely, determination and quantification of the relationship between the response and 

the settings of group experimental factors as well as finding the settings of the 

experimental factors that optimize response. Optimal designs are the alternative when 

the experimental region is irregular due to factor levels constraints or when the 

experimenter has prior knowledge about the process being studied which may suggest a 

non-standard model where some higher order terms or some interaction terms between 

factors may not be included in the model or even when the process factors are categorical 

or an unusual sample size may be of importance due to cost or time considerations. 

1.4 Scope of the Study   

A second order optimal rotatable design in four dimensions constructed using balanced 

incomplete block designs was applied in this study. The 𝐷−, 𝐴−, 𝐸 −and 𝑇 −optimal 

criteria for a general design were obtained. The weights corresponding to 

the 𝐷−, 𝐴−, 𝐸 − and 𝑇 −optimal designs as put forward by  Pukelsheim, (2006) were 

used to obtain optimal designs by varying the proportions each regression vector was 



8 
 

 
 

to be run. The respective 𝐷−,𝐴−, 𝐸 − and 𝑇 −optimal criteria for the general designs 

were compared to the optimal variances of the optimal designs to obtain the relative 

efficiencies of the designs. An application to a four factor experiment where 

incubation time, initial pH levels of the fermentation broth, incubation temperature 

during fermentation and initial substrate concentration were investigated in relation to 

bioethanol yield. A second order model was fit to the experimental data. Model 

adequacy checking was carried out using the normal probability plots, residual plots, 

regression analysis and analysis of variance (anova). F-ratios and t-statistics to test 

various hypotheses on significance of model parameters i.e linear, two-term 

interactions and quadratic terms were employed. Factor settings which optimized 

ethanol yield were determined through the path of steepest ascent analysis method 

using R programming as well as the determination of optimum ethanol yield using 

Response surface plots. Canonical analysis was used to analytically determine the 

point of maximum yield and the corresponding ethanol yield. 

1.5 Objectives of the Study 

1.5.1 General Objective 

 Apply a second order optimal rotatable design in four dimensions constructed using 

balanced incomplete block design to develop a statistical model that describes ethanol 

production through fermentation process of pineapples peels using Saccharomyces 

Cerevisiae (yeast).  

1.5.2 Specific Objectives 

The specific objectives for this study was to. 

i. Determine 𝐷−,𝐸−, 𝐴 − 𝑎𝑛𝑑 𝑇 −Optimal values of the general rotatable 

second order design in four dimensions constructed using balanced incomplete 

block designs. 
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ii. Derive Relative efficiencies  of  the 𝐷−,𝐸−, 𝐴 − 𝑎𝑛𝑑 𝑇 −Optimal designs 

over the general design 

iii. Determine the effects of incubation time, incubation temperature, initial PH 

and substrate concentration on pineapple peels during fermentation using yeast 

on ethanol yield.  

iv. Obtain Optimum settings of time, temperature, initial PH and substrate 

concentration of pineapple peels that led to optimal yield of ethanol using the 

design. 

1.6 Significance of the Study  

This study aimed at exploring prudent waste management method and at the same 

time explore cheap alternative sources of fuel to fossil fuels. Ethanol is a renewable 

bio-based resource which is oxygenated potentially reducing emissions in 

compression–ignition engines and at the same tackling urban pollution caused by the 

by-products of pineapple processing firms and markets which are known to exhibit 

both high biochemical oxygen demand (BOD) and chemical oxygen demand (COD) 

values which give rise to serious pollution problems if not properly disposed. Most 

studies in optimization of process variables in response surface methodology have 

concentrated on Box-Behnken designs, CCD and its hybrids CCDF yet rotatable 

second order designs constructed using balanced incomplete block designs have been 

successfully used in this work to optimize ethanol yield from pineapple peels. The D-

,A-,E- and T-optimal values of the general design and the relative efficiencies of  D-

,A-,E- and T-optimal designs have been determined providing knowledge to scholars. 

To determine the levels of ethanol produced per experimental run with higher 

precision, the method of fractional distillation is recommended though it is tedious, 

slow and expensive to undertake for each and every other sample.   
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction  

 In this chapter, response surface methodology (RSM) in relation to D-,E-,A-and T- 

optimality criteria is  reviewed as well as optimal design and the relative efficiency of 

the general design to optimal designs. Literature on ethanol production, literature on 

suitability of pineapple peels as substrate for ethanol production using Saccharomyces 

Cerevisiae (yeast) as a fermentation agent and the process variables that influence 

ethanol production and its optimization using RSM. The research gaps on designs 

used in optimization method was also identified for study. 

2.1 Optimality Criterion 

The main goal of RSM is to use a sequence of designed experiments to obtain an 

optimal response as introduced by  Box and Wilson, (1951).There are many situations 

for which RSM has proved to be a very useful tool. Hill and Hunter, (1966) illustrated 

chemical and processing applications of canonical analysis and use of multiple responses. As 

an important subject in the statistical design of experiments, (RSM) is a collection of 

mathematical and statistical techniques useful for the modelling and analysis of 

problems in which a response of interest is influenced by several variables and the 

objective is to optimize this response Montgomery, (2005). The main advantage of 

RSM is the reduced number of experimental runs needed to provide sufficient 

information for statistically acceptable results, its suitability for multiple factor 

experiments and exploration of common relationship between various factors towards 

finding the most appropriate production conditions for the bioprocess and forecast 

response, Isaias et al., (2004)(Isaias et al., 2004)(Isaias et al., 2004). Response Surface 

Methodology is widely used in many disciplines such as Manufacturing Industry, 
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Biological, Clinical, Social, Food processing, Engineering, Agricultural sciences, 

amongst others. It is a tool in statistical analysis of experiments where the yield is 

believed to be influenced or determined by one or more controllable factors. Mead 

and Pike, (1975) investigated the extent to which RSM had been used in applied 

research and gave examples from biological applications which led to optimization of 

some conditions for good quality leads of the outputs. RSM has successfully been 

used by Zhang et al., (2015) to optimize the cell density and fermentation process. 

Myers et al., (1989) summarized the developments in RSM that had occurred since 

the review of Hill and  Hunter, (1966) while a more recent summary by Khuri, (2017) 

provided an overview of response surface methodology including the modelling of a 

response function, the corresponding choice of design, and the determination of 

optimum conditions as well as an overview of the use of RSM in agricultural and food 

sciences with several examples taken from a variety of applied journals.  Box and 

Hunter, (1957)  introduced rotatable designs for the exploration of response surface. 

They constructed these designs through geometrical configurations and obtained 

several second order designs. Afterwards Gardiner et al., (1985) obtained some third 

order designs through the same technique for two and three factors and a third design 

for four factors. Bose and Draper, (1959) obtained some second order designs by 

using the transformation group in three dimensions and its generated points sets and 

the formation of rotatable arrangements and rotatable designs by combination of 

several points sets generated. Box and Behnken, (1960) obtained some second order 

rotatable designs from those of first order. Box and Hunter, (1957) showed that the 

number of Centre points in the rotatable central composite designs could be chosen to 

provide a design with uniform precision for the estimated surface within one unit of 

the design center co-ordinates on the coded scale. They reasoned that the investigator 
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is mostly interested in the response surface near the Centre of the design. Designs 

have been developed to have as close to the minimum number of points as possible to 

estimate the second order response surface. Tables of these designs or methods to 

construct them can be found in Draper, (1985). Most of these designs are based on 

2𝑛−𝑝 fractional factorial designs augmented with design center points to estimate 

second-order response surface models. A class of three-level designs to estimate 

second-order response surfaces was proposed by Box and Behnken, (1960), these 

designs are rotatable or nearly so with a reduction in the number of experimental units 

by the 3𝑛 designs. The designs are formed by combining 2𝑛 designs with incomplete 

block designs. Box and Hunter, (1957) gave the conditions for blocking second order 

response surface designs so that the block effects do not affect the estimates of the 

parameters for the response surface equation. Das and Narasimham, (1962) gave a 

method using properties of balanced incomplete block designs (BIBD) of obtaining 

second order rotatable designs with any number of factors. The designs were observed 

to have reasonably small number of points and by extending the method, third order 

rotatable designs both sequential and non-sequential of up to fifteen factors were 

obtained using doubly balanced incomplete block designs and complementary B.I.B 

designs. Koske et al., (2011) developed a third order rotatable design in five 

dimensions with 320 points through balanced incomplete block design. Box and 

Wilson, (1951) observed that the circumstances of spheres are such that their exact 

rotatability is unattainable, although it is still a good idea to make the design nearly 

rotatable. Optimal designs are experimental designs that are generated based on a 

particular optimality criterion and are generally optimal only for a specific statistical 

model. Smith, (1918) was the first to state a criterion and obtain optimal designs for 

regression problems. Many years later, Kiefer, (1959) developed useful computational 
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procedures for finding optimum designs in regression problems of statistical 

inference. There are many optimality criteria, sometimes called alphabetical 

optimality criteria for designs. These are single number criteria where each one 

intends to capture an aspect of the ‘goodness’ of a design and can be classified into 

either information-based criteria, distance-based criteria, compound design criteria 

and other criteria. Information-based criteria are related to the moment matrix X′X of 

the design. This matrix is important because it is proportional to the inverse of the 

variance-covariance matrix for the least-squares estimates of the linear parameters of 

the model. These criteria can be divided into two classes according to the number of 

parameters used; the first class uses all parameters of the model and the second uses a 

sub –system of the parameters. In the first class, possible criteria to consider are, D–, 

A– and E– optimality criteria. Statistical models with several parameters have their 

mean of the parameters estimator as a vector making the variance of the parameters 

estimate a matrix whose inverse is called the ‘’information matrix’’. The optimality 

properties of designs are determined by their moment matrices,  Pukelsheim, (2006). 

2.1.1 D-Optimality 

For information-based criteria, the most prominent of such criteria is the D-optimality 

criterion that maximizes the determinant of the moment matrix. This amounts to the 

minimization of the size of the confidence region on the vector β in model Pazman, 

(1992). Determinant criterion is the most prominent design criterion in the life 

applications, which was introduced by Wald, (1943) it puts emphasis on the quality of 

the parameter estimates. It was called later, D–optimality by Kiefer and Wolfowitz, 

(1959). D–optimality is the most well studied problem which is seen in the literature 

by Kiefer, (1959), Atkinson and Donev, (1992) and Pukelsheim and Rosenberger, 

(1993)  where they considered the construction of D–optimal designs in a variety of 
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examples. Its popularity is due its simple computation, and the many available 

algorithms. D-optimality is parameter estimation criterion which aims at seeking 

designs which maximize the determinant of the moment matrix. 

2.1.2 E-Optimality  

E–optimality was introduced by Ehrenfeld, (1955), but the Computations of E–

optimal designs for the full mean parameter vector and for many subsets in univariate 

polynomial regression models were determined by Rissanen, (1983). A method for 

computing E–optimal designs for a broad class of two parameter models was 

presented by Dette and Haines, (1994).The evaluation of the smallest Eigen value of 

the moment matrix 𝑋′𝑋 of a design is the same as minimizing the largest Eigen value 

of the dispersion matrix (𝑋′𝑋)−1 according to  Pukelsheim, (2006). 

2.1.3 A-Optimality 

A–optimality criterion was introduced by Smith, (1918) as reported in Chernoff, 

(1953) and it involves the use of Fisher's information matrix. An algebraic approach 

for constructing A–optimal design under generalized linear models was presented by 

Yang, (2008).  

2.1.4 T-Optimality  

T-optimality is neither information-based criterion, distance-based criterion nor 

compound design criterion but falls under other criteria. T–optimal design is a plan 

where the optimality is obtained by discriminating between two or more models, one 

of which is true. Atkinson and Fedorov, (1975) introduced experimental designs for 

discriminating between two models and also between several models.  
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2.2 Efficiency of a Design 

If the experimental region (R) is either spherical or cuboidal, a standard response surface 

design such as central composite design (CCD), Box-Behnken designs or their variations 

such as face-centred cube designs are applied since they are quite general and flexible 

Montgomery, (2005).  

But occasionally during experimentation these designs are not the obvious choice and 

Optimal designs are the alternative when the experimental region is irregular due to factor 

levels constraints or when the experimenter has prior knowledge about the process being 

studied which may suggest a non-standard model where some higher order terms or some  

interaction terms between factors may not be included in the model or even when the 

process factors are categorical or an unusual sample size may be of importance due to 

cost or time considerations. In such cases, designs of fewer trials are carried out with the 

aim of obtaining an efficient design for fitting a reduced quadratic or higher order model. 

The efficiency of an experiment is influenced by the adoption of an appropriate 

experimental design capable of representing the response surface design. Selecting an 

appropriate experimental design, is based on finding the best optimality criterion in which 

larger efficiency values imply a better design. 

2.3 Process Variables for Ethanol  Production from Pineapple Peels  

Ethanol production has received considerable attention over the years as an octane 

booster, fuel extender, or a neat liquid fuel. Renewable feed stocks used in its 

production provide a domestic endless supply of raw materials that are immune to 

disruption by foreign suppliers as well as improving international balance of 

payments. Wyman and Hinman, (1990) and Onuki et al., (2008) reviewed published 

literature on current ethanol production, separation methods, and chemical and 

sensory analysis techniques. According to their work, ethanol produced by 
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fermentation, called bioethanol, accounts for approximately 95% of the ethanol 

produced in the world which had risen to nearly 13.5 billion gallons in 2006 although 

it had been part of alcoholic beverages for a long time, its application expanded 

tremendously during the 20th Century as an additive to gasoline. In their study, Corn 

in the Unites States and sugarcane in Brazil are noted to be the widely used raw 

materials for bioethanol production and that Cellulosic materials are expected to be 

the ultimate major source of ethanol since they represent a value-adding technology 

for agricultural co-products. 

Periyasamy et al., (2009) used Saccharomyces cerevisiae to produce bio-ethanol from 

sugar molasses. The influencing parameters that affected the production were 

optimized. The optimal values of the parameters such as temperature, pH, substrate 

concentration, enzyme concentration and fermentation period were found to be 35°C, 

4.0, 300 mg/l, 2 mg/l and 72 h respectively. Under these optimum operating 

conditions, a maximum of 53% bio-ethanol yield was achieved. However the 

optimization method was that one of one-parameter-at-a time where identification of 

bio-ethanol was done by taking about 5 to 10 ml of the fermented sample and adding 

a pinch of potassium dichromate and a few drops of  𝐻2𝑆𝑂4. The colour of the sample 

turned from pink to green indicating presence of bioethanol. Determination of sugar 

concentration was by rapid test method where 5 ml of fermented sample was taken 

and dissolved in 100 ml of distilled water and mixed with 5 ml of conc. Hydrochloric 

acid (HCL) and was heated at 700𝐶 for a period of 10 minutes. The obtained sample 

was neutralized by adding 𝑁𝑎𝑂𝐻 and then prepared to 1000 ml and taken into a 

burette. The 5 ml of Fehling A and 5 ml of Fehling B were taken and mixed with 10 

to 15 ml of distilled water in a conical flask and Methylene blue indicator was added 

where the conical flask solution was titrated with burette solution in boiling 
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conditions until disappearance of blue colour. The sugar concentration was calculated 

by using the following formula: Sugar Concentration (mg/l) = [(Dilution factor x 

Fehling factor) / Titrate value] x 100.While ethanol concentrations were determined 

by gas chromatography. PH was optimized by fermenting the sample to different pH 

values between 1.0 to 8.0 and to obtain maximum yield of bioethanol, lime or 

sulphuric acid were added and the samples were kept in anaerobic conditions for four 

days. The fermented solution was analysed for every 12 hour intervals indicating that 

bioethanol increased with increase in pH and reached a maximum when pH was 4 and 

reduction was noted as pH increased due to lesser activity of the yeast.  

There have been several reviews of literature on bioethanol production from sugar 

molasses using yeast cells (Saccharomyces cerevisiae) from various authors and the 

optimization of the process variables for bioethanol yield. Fakruddin et al., (2013) 

used the one-factor-at-a-time approach in a study in which only one factor is varied at 

a time while all others are kept constant. Stress tolerant yeast strains were isolated 

from agro industry and optimized a process for ethanol production by considering all 

the factors at a time. Several fermentation batches were carried out by three stress 

tolerant strains by varying temperature, pH, sugar concentration, aeration, metal ions 

and immobilization. The fermentation was carried out at varying temperature, pH, 

reducing sugar concentration, agitation and immobilized condition at a time. Alcohol 

percentage in the fermentation broth was measured by redox back titration (micro- 

diffusion) method. They found out that the rate of ethanol production by yeast cells is 

highly affected by the pH of the fermentation medium. More acidic and basic 

conditions both retard the yeast metabolic pathways and hence the growth of cells 

also. Optimum pH is required for growth and ethanol yield by the yeast strains. To 

determine the optimum pH for ethanol yield, several experiment were conducted at 



18 
 

 
 

pH 4.5, 5.0 and 6. Increases or decreases of the initial pH from 5.5 of the fermentation 

media decreased the ethanol yield and it was also noted that all the strains produced 

maximum ethanol at pH 5.5 after 60 hours except T strain. This approach is time-

consuming and expensive and possible interaction of effects between variables cannot 

be evaluated and misleading conclusions may be drawn. RSM overcomes these 

difficulties, since it allows accounting for possible interaction effects between 

variables. If adequately used, this powerful tool can provide the optimal conditions 

that will improve ethanol production. Hamouda et al., (2015) in their study, aimed at 

optimizing the production of ethanol by Egyptian yeast strain Pichia Veronae on the 

batch flasks scale. RSM based on CCFD of experiments was used to overcome the 

limitation of one-at-a-time-parameter optimization. Zentou et al., (2017),evaluated the 

potential of molasses as bioethanol feedstock by studying the effect of different 

operating conditions on fermentation yield including initial sugar concentration (25-

150 g/L), pH (4.5-9.5), and temperature (30-50°C). Molasses composition analyses 

indicated its richness with sucrose and fermentable sugars which qualified it as a 

promising feedstock for bioethanol production. The maximum ethanol yield was 

noted for: initial sugar concentration of 50 g/L, pH of 4.5 and 30 °C of temperature 

which represented the optimum conditions for the fermentation. The kinetics study of 

fermentation experiment carried out under optimal conditions revealed that the 

fermentation reaction occurred in 3 phases: lag phase, acceleration phase and final 

phase. Microorganism and culture media was prepared using 2-3 loops of active dry 

Saccharomyces cerevisiae (yeast) which was dissolved in 50 mL of distilled water 

which was then added directly into 200 mL of culture media containing diluted 

molasses, ammonium sulphate (0.7g/L), ammonium phosphate (0.4 g/L) and 

incubated at 35°C and shaking with 250 rpm for 6 hours. Anaerobic fermentation was 
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carried out in batch mode using bioreactor where, one litre volume containing 250 mL 

of culture media with different initial sugar concentrations, different temperatures and 

different pH values was fermented, the fermentation process was carried out in three 

duplicates during 72 hours , pH value was adjusted to 4.5, 7 and 9.5 using sulphuric 

acid (0.1M) and sodium hydroxide (0.1M); Inoculum for fermentation assays was 

prepared with different dilution rates for ( 50 ,100 and 150 g/L) of initial sugar. The 

fermentation temperature was kept at 20, 30 and 50 °C Optimization was through 

plotting the yield against the three parameters that were being optimized. While El-

Gendy et al., (2013) used CCDF in an attempt to optimize variables: incubation 

period, initial PH, incubation temperature and molasses concentration which affect 

Bioethanol production by fermentation using Saccharomyces cerevisiae. Hayder et al., 

(2018) used, the response surface methodology (RSM) based on central composite 

design (CCD), to estimate the number of runs and optimum conditions for four 

independent variables that affected fermentation process of lignocellulosic materials 

which usually exist in the organic fraction of Iraqi municipal solid waste, and the 

independent variables were initial concentration, pH, and inoculum size and 

fermentation time. In fermentation process, the Saccharomyces cerevisiae was used as 

an inoculum. The aim of their study was bioethanol production from the cellulosic 

biomass under controlled optimum conditions and a maximum bioethanol yield of 

332.9 mg/L, was practically achieved following thirty different experimental runs, as 

specified by 24–full factorial CCD. The optimum values for the four parameters, 

corresponding to the maximum yield were; initial sugar weight = 75 g/L, pH = 6, 

fermentation time = 39 hrs. (Aerobic fermentation = 24 hrs. and anaerobic 

fermentation = 15 hrs.), and finally yeast inoculum = 2 ml/l. The obtained data was 

utilized to develop a semi-empirical model, based on a second degree polynomial, 
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which helped to predict bioethanol yield. The model adequacy was tested using anova  

and the 𝑅2= 0.9771, made the model acceptable. The developed model was used to 

generate contour plots and yield response surface. Maximum bioethanol production 

was observed in a Lab scale bioreactor reaching up to 492.9 mg/L within optimum 

conditions. Adnan et al., (2014) studied ethanol fermentation processes using glycerol 

as carbon source using local isolate, ethanol genic bacterium Escherichia coli SS1 in a 

closed system. Factors affecting bioethanol production from pure glycerol were 

optimized via response surface methodology (RSM) with CCFD. Four significant 

variables were found to influence bioethanol yield; initial pH of fermentation 

medium, substrate concentration, salt content and organic nitrogen concentration with 

statistically significant effects (𝑝 < 0.05) on bioethanol production. The significant 

factors were then analysed using CCFD. The optimum conditions for bioethanol 

production were substrate concentration at 34.5 g/L, pH 7.61, and organic nitrogen 

concentration at 6.42 g/L which gave an ethanol yield of approximately 1.00 mol/mol. 

In addition, batch ethanol fermentation in a two-litre bioreactor was performed at the 

glycerol concentration of 20 g/L, 35 g/L and 45 g/L, respectively. The ethanol yields 

obtained from all tested glycerol concentrations were approaching theoretical yield 

when the batch fermentation was performed at optimized conditions. Yusuf et al., 

(2012) study, revealed that pineapple peels can be used to produce ethanol using 

baker’s yeast (Saccharomyces cerevisae) in an aerobic degradation of sugar. The 

various parameters of fermentation evaluated compared favourably with the standard 

values. Tropea et al., (2014) observed that Pineapple waste, which is the by-product 

of the pineapple processing, is rich in cellulose, hemicelluloses, sugar and other 

carbohydrates. These wastes consist of residual pulp, peels and skin which can be 

dried mechanically making it easier to store throughout the year. They contain high 
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sugar and lignocelluloses amounts making them a potential source of valuable 

fermentation and non-fermentation products. Biomasses are renewable non-fossil 

carbon, such as energy crops and lignocelluloses residues from plants, grasses, fruit 

wastes, cereals algae etc. which can be converted to ethanol through microbial 

fermentations. Almarsdottir et al., (2012) argued that utilization of biomass for 

ethanol production would ensure a continual energy supply. Wyman and Hinman, 

(1990) records that Lignocellulosic material is the most abundant biopolymer on earth 

and its annual production is estimated at approximately 50 billion tons. Choonut et al., 

(2014) and Sun and Cheng, (2002) found out that Lignocellulose comprise of two 

main classes of structural polysaccharides, cellulose and hemicellulose which when 

hydrolyzed, provide sources of fermentable sugars (glucose and xylose, respectively). 

To produce ethanol at a cheap cost, the supply of cheap raw material is vital. The 

economics of biofuel production by fermentation are influenced by the cost of the raw 

materials used, which accounts for more than half of the costs of production Choonut 

et al., (2014). Further they observed that pineapple peels are novel and potential raw 

material for ethanol production. To enhance the bio-digestibility of the wastes, 

lignocelluloses pretreatment either physically; chemically or biologically to increase 

accessibility of the enzyme to the materials is necessary. Pre-treatment results in 

enrichment of the difficult biodegradable materials, and improves the yield of 

reducing sugar and ethanol from the wastes. An increase of 1.71 fold of cellulose was 

observed after pre-treatment of pineapple peel with water and heat at 100oC for 240 

min to 34.03±1.30 g/L when the substrate concentration was 20g/L was observed. 

This method of pre-treatment was reported to be the most economically feasible. The 

results of fermentable sugars increase and various methods of pre-treatments are 

shown in Table 2.1. 
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Table 2.1: Composition of Treated and Un-Treated Pineapple Peel 

(Choonut et al., 2014) 
Physical 
 pretreatment 

Chemical 
Pretreatment 

Cellulose (%) Hemicellulose 
 (%) 

Lignin (%) Ash ( %) 

Water bath H2O 37.68±6.97 51.13±6.77 10.24±0.63 0.96±0.81 

(100oC, 240 min) H3PO4 41.86±1.28 42.83±2.93 14.63±2.70 0.67±6.65 

Microwave (3 min) H3PO4 36.96±1.94 53.54±1.20 9.58±1.40 0.24±0.28 

 (NH4)2SO4 32.01±0.35 59.87±0.71 7.76±1.03 0.37±0.04 

Ultrasonic (60 

min) 

CH3COOH 35.99±1.85 52.77±1.00 11.02±2.50 0.24±0.34 

 H3PO4 30.55±1.84 57.84±1.65 11.20±0.14 0.41±0.04 

Stream explosion CH3COOH 25.54±3.41 69.10±3.42 5.06±0.21 0.31±0.21 

(121oC, 60 min) H3PO4 27.84±6.89 42.91±10.61 25.15±1.10 4.10±3.39 

Un-treated peel  21.98±2.34 74.96±2.55 2.68±1.54 0.38±0.25 

 

Table 2.2: Effects of Pretreatment on Reducing Sugar Yield from 

Pineapple Peel(Choonut et al., 2014) 

Physical Pretreatment.        Chemical Pretreatment.   Cellulose (%) Reducing Sugar 

(g/L)   

Water bath H2O 37.68±6.97    34.03±1.30 

(100oC, 240 min) H3PO4 41.86±1.28  40.10±3.98 

Microwave (3 min) H3PO4 36.96±1.94  31.22±1.54 

 (NH4)2SO4 32.01±0.35  25.74±1.11 

Ultrasonic (60 min) CH3COOH 35.99±1.85  30.14±2.47 

 H3PO4 30.55±1.84  20.25±2.78 

Stream explosion CH3COOH 25.54±3.41  20.25±1.56 

(121oC, 60 min) H3PO4 27.84±6.89  25.47±2.58 

Enzymatic hydrolysis is regarded as the most promising approach to liberating 

fermentable sugars in an energy-efficient way from the carbohydrates found in 

lignocelluloses in order to produce ethanol Tropea et al., (2014) Sugars released by 

enzymes are then fermented to ethanol by yeasts. There are several fermentation 

approaches that can be employed as follows: Sequential enzymatic hydrolysis and 

fermentation referred to as separate hydrolysis and fermentation (SHF), while when 

the two steps are simultaneously done, the process is called simultaneous 

Saccharification and fermentation (SSF). SSF has the advantage of preventing the 

buildup of hydrolysis products such as cellobiose and glucose, which reduce the rate 

of further substrate hydrolysis. However, it has to be carried out at temperatures that 

suit the fermenting organism. In the case of yeast, the temperature is generally below 
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40 ºC, which is below the optimum temperature for enzymatic hydrolysis (50 ºC) 

according to Tengborg et al., (2001). Fermentation also seems to decrease the 

inhibition of the enzymes probably by converting some of the toxic compounds 

present in the hydrolysate. These mechanisms increase the overall productivity, the 

concentration and also the final ethanol yield Barta et al., (2010). Tables for various 

composition of pineapple peels after different forms of pretreatment are shown in the 

appendix in Table D and Table E. From the foregoing literature, several researchers 

used CCD and its counterpart CCFD which is not a rotatable design to optimize 

fermentation and other processes but none has been done in literature on fitting 

similar studies using rotatable designs constructed using balanced incomplete block 

designs yet second order rotatable designs with any number of factors with reasonably 

small number of runs can easily be obtained as shown by Das and Narasimham, 

(1962) which are also fully rotatable unlike the CCDF. The optimality criteria of the 

general design with four factors and its efficiency to optimal designs have not been 

investigated also. This study aimed at optimization of bioethanol yield (as the 

response variable) using pineapple waste as the feedstock and yeast as the fermenter 

and the determination of factor settings namely: incubation time, pH initial of the 

medium, incubation temperature during fermentation, and substrate concentration of 

the pineapple peels which all are of continuous nature associated with this optimal 

yield hence RSM was used. Other than that, there were constrains in the design data 

from the variables used and therefore the experimental design had to meet 

requirements of the constraints. From the three dimensions plots and contours plots of 

the response surface some results were displayed which helped in understanding how 

the response changes with changes in design variables and since the study had four 
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independent process variables, general mathematical methods of locating the point of 

maxima would not have been employed. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction  

This chapter discusses 𝐷−,𝐸−, 𝐴 − 𝑎𝑛𝑑 𝑇 − optimality criteria of the general design 

and its relative efficiencies to the 𝐷−,𝐸−, 𝐴 − 𝑎𝑛𝑑 𝑇 − optimal designs. Effects of 

process variables fermentation time, initial pH of fermentation broth, incubation 

temperature and concentration of substrate used during fermentation using Pineapple 

peels as substrate for ethanol production, modeling, diagnostic checks of the fitted 

model using various tools and optimization using second order model using graphical 

method and analytical method. 

3.1 Optimality Criterion 

RSM is concerned with the selection and construction of an appropriate design that 

can provide adequate and reliable information concerning a certain response variable, 

denoted by 𝑌 and determination of a suitable model that best fits the data that can be 

generated from using the design chosen. Such a model gives an approximate 

functional relationship between the response variable 𝑌 and a set of control variables 

believed by the experimenter to have an effect on the response , the input variables are 

denoted by 𝑥1, 𝑥2, … , 𝑥𝑘  .Then finally the determination of optimal settings on the 

control variables that produce maximum (or minimum) response values within a 

certain region of interest 𝑅. 

𝑦𝑢 = 𝑓(𝑥𝑖𝑢) + 𝑒𝑢       (3.1) 

Where, 𝑢 = 1,2,… ,𝑁 are the 𝑁 observations and 𝑥𝑖𝑢 is the level of the 𝑖𝑡ℎ  factor at 

the 𝑢𝑡ℎ run. The function 𝑓(𝑥𝑖𝑢) describes the form in which the response and input 

variables are related and 𝑒𝑢 is the experimental error at the 𝑢𝑡ℎ run with mean zero 



26 
 

 
 

and variance 𝜎2 .The objective is to establish a functional relationship between the 

response and the control variables which gives a summary of an experiment and 

enables prediction of response 𝑦𝑢  for values of 𝑥𝑖𝑢  that are not included in the 

experiment. When 𝑓  is known, values of 𝑥𝑖  for 𝑖 = 1,2, … , 𝑘  which optimize the 

response can be determined using calculus methods or response surface plots. The 

function 𝑓  is approximated within an experimental region (𝑅)  by a polynomial of 

suitable degree in variables 𝑥𝑖  and analysis of variance method is used to test the 

adequacy of the fitted polynomial. If a polynomial adequately represents the response 

relationship, then it is called a response surface and a response surface design is a 

design that allows fitting of a response surface and provides a measure for testing their 

adequacy. The function 𝑓 is of degree one in 𝑥𝑖𝑢′𝑠  if  

𝑦𝑢 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑢 + 𝑒𝑢
𝑘
𝑖=1 .     (3.2) 

This model is used in the initial stages of experimentation to identify the important 

factors of the process and their importance in the process. Data analysis, determination 

of the significance of models parameters, estimation of the mean response and 

determination of optimum operating conditions on the control variables that result in 

maximum or minimum response over the region of interest (𝑅) is carried out using a 

second order model given in equation (3.3). 

𝑦𝑢 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑢 + ∑ 𝛽𝑖𝑖𝑥𝑖𝑢
2 + ∑∑ 𝛽𝑖𝑗𝑥𝑖𝑢𝑥𝑗𝑢 + 𝑒𝑢

𝑘
𝑖<𝑗

𝑘
𝑖=1

𝑘
𝑖=1    (3.3) 

To estimate the unknown parameters in equation (3.3), a series of experiments (runs) 

𝑁 > 𝑝 = 𝑘 + 1  are performed in which response 𝑦  is measured for a specified 

settings of control variables which in total constitute the response surface design or 

just a design which is denoted by a design matrix 𝐷𝑁×𝑘 . Given 𝑘 variates each at 𝑠 

levels, a design formed with 𝑁  of the 𝑠𝑘  variates treatment combinations, can be 
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written as the following  𝑁 × 𝐾 matrix, which we call the design matrix and denote it 

with𝐷𝑁×𝐾. 

𝐷𝑁×𝐾 = 

[
 
 
 
 
𝑥11 𝑥21 𝑥31 … 𝑥𝑘1
 𝑥12 𝑥22 𝑥32 ⋯ 𝑥𝑘2…   …    . . . ⋯ ⋯ 
⋯   ⋯    ⋯  ⋯ ⋯
𝑥1𝑁 𝑥2𝑁 𝑥3𝑁 ⋯ 𝑥𝑘𝑁]

 
 
 
 

   (3.4) 

The treatment combinations are called points of the design. Since the investigator is 

mostly interested in the response surface near the Centre of the design, it is 

important to know if a particular design is rotatable or not. According to Box and 

Hunter, (1957), a design of the form described will be rotatable design of order 𝑑 if a 

response polynomial surface  

𝑦𝑢 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑢 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑢𝑥𝑗𝑢 + ∑ 𝛽𝑖𝑗𝑘𝑥𝑖𝑢𝑥𝑗𝑢𝑥𝑘𝑢 +⋯𝑖≤𝑗≤𝑘𝑖≤𝑗𝑖      (3.5) 

is obtained from the treatments, on the variables 𝑥𝑖 ,𝑖 = 1,2, … , 𝑘   and with some 

suitable origin and scale, can be fitted so that the variance of the estimated response 

𝑣𝑎𝑟[�̂�(𝑥)] = 𝜎2𝑥𝑠
′(𝑋′𝑋)−1𝑥𝑠 from any treatment is a function of the sum of squares 

of the levels of the factors in that treatment combination, in other words, the variance 

of the estimated response at a point is a function of the square of the distance of a 

point from a suitable origin, so that the variances of all estimated responses at points 

equidistant from the origin are the same. The variance of the estimate 𝑦𝑢 is only a 

function of the distance 𝛿2 = ∑ 𝑥𝑖𝑢
2𝑘

𝑖=1  of the points 𝑥1, 𝑥2, … , 𝑥𝑘 from the Centre of 

the design. Spherical variance of the estimation of the response surface is achieved if 

the design points satisfy the following conditions as recorded in Box and Hunter, 

(1957) and Das and Narasimham, (1962)  

 i) ∑ 𝑥𝑖𝑢 = 0
𝑁
𝑢=1  

ii) ∑ 𝑥𝑖𝑢𝑥𝑗𝑢 = 0
𝑁
𝑢=1  



28 
 

 
 

iii) ∑ 𝑥𝑖𝑢
2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑁

𝑢=1  

 iv) ∑ 𝑥𝑖𝑢
2 𝑥𝑗𝑢

2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑁
𝑢=1  

 v) ∑ 𝑥𝑖𝑢
4 = 3∑ 𝑥𝑖𝑢

2 𝑥𝑗𝑢  
2𝑁

𝑢=1
𝑁
𝑢=1 For all 𝑖 ≠ 𝑗   (3.6). 

Das and Narasimham, (1962), demonstrated the construction of various designs of 

different factors one of which was for a four factor design with number of replications 

𝑟 of the BIBD being less than three the number of times (denoted by 𝜆) pairs of 

treatments occurred together in the design that is (𝑟 < 3𝜆). The values for the coded 

levels of the design denoted by letters 𝑎 and 𝑏 were obtained as follows 

∑𝑥𝑖𝑢
4 = 24𝑎4 + 2𝑏4      (3.7) 

∑𝑥𝑖𝑢
2 𝑥𝑗𝑢

2 = 16𝑎4      (3.8) 

Relating the two as in equation (3.6) part (v), gives  

i).24𝑎4 + 2𝑏4 = 3(16𝑎4) →
𝑏4

𝑎4
= 12 ⟹

𝑏2

𝑎2
= 2√3  and  

ii). ∑ 𝑥𝑖
2 = 24𝑎2 + 2𝑏2 = 𝑁     (3.9) 

will completely determine the values of 𝑎 and 𝑏. The number of points in this design 

is  𝑁 = 40 . They observed that no center points were necessary in these designs 

though they may be added if required. Solutions to equations (3.9) gave 𝑎 =

±1.137241371   and 𝑏 = ±2.116644693 as the coded levels of the factorial and the 

axial parts of the design respectively. For the purposes of analysis, both values were 

truncated at four significant figures in this work. To estimate the parameters of the 

developed model we proceed as follows: 
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Given 𝑦 = [

𝑦1
𝑦2
⋮
𝑦𝑁

]

𝑁×1

  𝑋 = [

1 𝑥11 𝑥12 ⋯ 𝑥1𝑘
1 𝑥21 𝑥22 ⋯ 𝑥2𝑘
⋮ ⋮ ⋮           ⋯     ⋮
1 𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝑘

]

𝑁×𝑝

 𝛽 = [

𝛽1
𝛽2
⋮
𝛽𝑛

]

𝑁×1

 𝜖 = [

휀1
휀2
⋮
휀𝑛

]

𝑁×1

 

Where 𝑦 is an (𝑁 × 1) vector of observations at each run, 𝑋 is an (𝑁 × 𝑝) matrix of 

levels of independent variables known as the model matrix with 𝑝 = 𝑘 + 1, 

𝛽 is a (𝑁 × 1) vector of regression coefficients, and 𝜖 is an (𝑁 × 1) vector of random 

errors. 

𝑦 = 𝑋𝛽 + 𝜖       (3.10) 

We assume 𝝐 is normally distributed with mean zero and Cov (𝜖) =𝜎2𝐼 according to 

Montgomery, (2005) and the estimates of the parameters is given by 

�̂� = (𝑋′𝑋)−1𝑋′𝑦      (3.11) 

The variances of the parameters estimate (�̂�) is obtained as  

Var (
^

 ) =𝜎2(𝑋′𝑋)−1      (3.12) 

�̂�𝑢=𝑥𝑢�̂�        (3.13)  

Rotatability requires that the model have a reasonably consistent and stable variance 

throughout the region of interest R. The variance of the predicted response at some 

point 𝑥 is  

𝑉[�̂�(𝑥)] = 𝜎2𝑥′(𝑋′𝑋)−1𝑥      (3.14) 

 Box and Hunter, (1957) suggested that a second order response surface should be 

rotatable meaning that the 𝑉[𝑦(𝑥)]  is the same at all points 𝑥  that are the same 

distance from the design center i.e. the variance of predicted response is constant on 

spheres. Since the aim of RSM is optimization and the location of the optimum point 
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is unknown prior to running the experiment, it makes sense to use a design that 

provides equal precision of estimation in all the directions. The design problem 

therefore consists of selecting row vectors 𝑋𝑖×𝑝, 𝑖 = 1,2, … ,𝑁 from the design space 

𝑋 such that the design defined by these 𝑁 vectors is, in some sense, optimal. The 

moment matrix of the design is given as 

𝑀 =
𝑋′𝑋

𝑁
        (3.15) 

 We assume 𝑁 is fixed. Solutions to this problem consist of developing some sensible 

criterion based on the above model and using it to obtain optimal designs, 

Montgomery, (2005).For the optimality criterion, the class of 𝜙𝑝-criteria, that is T-, 

D-, A- and E- corresponding to parameter values 1, 0, -1 and -∞ respectively are 

summarized in equation (3.16) as given in  Pukelsheim, (2006). The amount of 

information inherent to Ck(M( )) is provided by 𝜙𝑝-criteria with Ck(M( ))  PD(m), 

defined by: 

𝜙𝑝(𝐶) = {

𝜆𝑚𝑖𝑛(𝐶), 𝑖𝑓 𝑝 = −∞

det(𝐶)1/𝑠 , 𝑖𝑓 𝑝 = 0

[
1

𝑠
𝑡𝑟𝑎𝑐𝑒 𝐶𝑝]

𝑝

, 𝑖𝑓 𝑝 ≠ 0,±∞

   (3.16)  

For all C in PD (m). By definition 𝜙𝑝(C) is a scalar measure which is a function of the 

Eigen values, determinant, trace and average variance of C for all p [- ; 1] 

3.1.1 D-Optimality Criterion 

Let C be a parameter subsystem moment matrix of S dimension, then D-optimality is 

given by 

𝜙0(𝐶) = (det 𝐶)
1/𝑠      (3.17) 
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Where 𝐶  is the moment matrix and 𝑆  is the number of parameters in the model. 

Maximization of the determinant of the moment matrix is the same as minimizing the 

determinant of the dispersion matrix that is (det 𝐶)−1 = det(𝐶)−1.The focus of D-

optimality is on estimation of model parameters through good attributes of the 

moment matrix, which is defined as 𝐶 =
𝑋′𝑋

𝑁
, where 𝑁is the total number of runs in 

the design, which is used as a penalty for larger designs. D-optimality requires one to 

maximize the determinant of the moment matrix, i.e. Max |𝑋′𝑋| =min 

|(𝑋′𝑋)−1|.Under the standard normality assumptions, |𝑋′𝑋| is inversely proportional 

to the square of the volume of the confidence region for the regression coefficients. 

Hence the larger the determinant of 𝑋′𝑋  the better the estimation of the model 

parameters. Quite often for second order models, there is no finite D-optimal design; 

however, one can still compare the results for a particular design to the theoretical 

values.  

3.1.2 E-Optimality  

The procedure here builds on finding the design which maximizes the minimum 

eigenvalue of 𝑋′𝑋 or equivalently, minimize the maximum eigenvalue of (𝑋′𝑋)−1 

.The aim of E-optimality is to minimize the maximum variance of all possible 

normalized linear combinations of parameter estimates.  

Max 𝜆𝑚𝑖𝑛(𝑋
′𝑋) = Min 𝜆𝑚𝑎𝑥(𝑋

′𝑋)−1.   (3.18) 

It is the minimization of the largest Eigen value of the dispersion matrix. Which is 

given by 

1

𝜙−∞(𝐶𝑘(𝐴))
= 𝜆𝑚𝑎𝑥(𝐶𝑘(𝐴)

−1)      (3.19) 
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The Eigen value criterion 𝜙−∞  is one extreme member of the matrix means 𝜙𝑝 

corresponding to the parameter 𝑝 = −∞. It is one of the four particular members of 

the one dimensional family of matrix means 𝜙𝑝 
that submits itself to the principles 

that a reasonable criteria must meet as presented in Pukelsheim and Rosenberger, 

(1993) expressed in the form  

𝜙−∞(𝐶) = 𝜆𝑚𝑖𝑛(𝐶)                                                                               (3.20) 

3.1.3 A-Optimality 

This criteria purpose at minimizing the sum of diagonal elements of the inverse of the 

moment matrix which is equivalent to minimizing the average variance of the 

parameter estimates given as Min 𝑡𝑟𝑎𝑐𝑒(𝑋′𝑋)−1 matrix. Invariance under 

reparameterization loses its appeal if the parameters of interest have a definite 

physical meaning. The average variance criterion saves the situation by providing a 

reasonable alternative. If the coefficients matrix is partitioned into its columns, 𝑘 =

(𝐶1, 𝐶2, … , 𝐶𝑘). Then the inverse 
1

𝜙−1
 can be represented as 

 
1

𝜙−1(𝐶𝑘(𝐴))
=
1

𝑠
𝑡𝑟𝑎𝑐𝑒 𝐶𝑘(𝐴)

−1    (3.21) 

This corresponds to the average of the standardized variances of the optimal estimates 

of the scalar parameter systems 𝑐1
′𝜃, … , 𝑐𝑠′𝜃 formed from the columns of matrix 𝐶, 

Pukelsheim and Rosenberger, (1993). Therefore, the average variance criterion is 

given by  

𝜙−1(𝐶) = [
1

𝑆
𝑡𝑟𝑎𝑐𝑒𝐶−1]

−1

     (3.22) 

3.1.4 T-Optimality  

There are two choices for defining T–optimality criterion according to the number of 

models under discrimination.To discriminate between competing models, Atkinson 
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and Fedorov, (1975) introduced T-optimality design criterion in the context of optimal 

design theory. The T-criterion is given by 

𝜙1(𝐶) =
1

𝑆
𝑡𝑟𝑎𝑐𝑒𝐶      (3.23) 

3.2 Relative Efficiency and Optimal Designs  

A procedure that works with a smaller sample is usually more efficient than one that 

requires a larger sample. In other words, an efficient procedure produces results that 

maximize use of materials, time and energy. An efficient experimental design 

produces the desired experimental results with the minimum amount of resources (e.g. 

time and money). The best experimental design in any given condition is the one 

which estimates the desired effects and contrasts with maximum precision or 

efficiency. Efficiency as discriminating criteria allows the comparison between any 

design and the best design. One of the main objectives of RSM is the determination of 

the optimum settings of the control variables that result in a maximum (or a 

minimum) response over a certain region of interest, R. This requires having a ‘good’ 

fitting model that provides an adequate representation of the mean response because 

such a model is to be utilized to determine the value of the optimum, Montgomery, 

(2005). A design can be made better by varying the proportion that a particular vector 

is run. When all the regression vectors are run an equal number of times, we have a 

uniform design. Pukelsheim, (2006) gives details of obtaining the optimal weights of 

a design for matrix means ∅𝑝with 𝑝 ∈ (−∞, 1] the optimal weights satisfy 

 𝑤𝑖 =
√𝑏𝑖𝑖

∑ √𝑏𝑗𝑗𝑗≤𝑁
 ∀𝑖 = 1,… ,𝑁     (3.24) 

 Where 𝑏11, … 𝑏𝑁𝑁 are the diagonal elements of matrix 𝐵 given as equation (3.25) 

𝐵 = 𝑈𝐶𝑝+1𝑈′       (3.25) 
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Where 𝑈 = (𝑋𝑋′)−1𝑋𝐾 and 𝐶 is the information matrix,𝐾 is the coefficient matrix 

and the 𝑁  regression vectors 𝑥1, … , 𝑥𝑁 form the rows of the design matrix 𝑋. Hence 

𝑤𝑖  will form the proportion that each regression vector will be run to obtain the 

 𝐷−, 𝐴−, 𝐸 − and 𝑇 − optimal designs. The optimal variance for the design is given 

by equation (3.26) 

 𝑉(∅𝑃) = (
1

𝑆
𝑡𝑟𝑎𝑐𝑒 𝐶𝑃)

1
𝑝⁄
= (

1

𝑆
(∑ √𝑏𝑗𝑗𝑗≤𝑁 )

2
)
1
𝑝⁄

  if 𝑝 ≠ 0. For 𝑝 ∈ (−∞, 1)    (3.26)  

3.2.1 D-Optimal Efficiency  

The optimal weights of D-optimal design were obtained using equation (3.24) and the 

appropriate matrix 𝐵 after substituting the value of 𝑝 = 0 in equation (3.25) where 

𝑝 ∈ (−∞, 1) and the corresponding optimal variance from equation (3.26). 𝐵𝑑  Matrix 

is given as 

 𝐵𝑑 = 𝑈𝐶𝑈′       (3.27) 

Factorial weight corresponding to 𝐷 −optimal 

 𝐷𝑓𝑤 =
√𝑏11

∑ √𝑏𝑗𝑗𝑗≤𝑁
       (3.28) 

while the weight corresponding to axial part is obtained as  

𝐷𝑎𝑤 =
√𝑏𝑁𝑁

∑ √𝑏𝑗𝑗𝑗≤𝑁
       (3.29) 

Where 𝑏11, … 𝑏𝑁𝑁 are the diagonal elements of matrix 𝐵𝑑 . The 𝐷 −optimal design 

was obtained by replicating the factorial and axial parts as per the weights obtained to 

give the design matrix 𝑋𝑑 which was used to obtain the D-optimal moment matrix 𝐶𝑑 

𝐶𝑑 =
𝑋𝑑
′𝑋𝑑

𝑁𝑑
        (3.30) 
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where 𝑁𝑑  was the number of runs in the 𝐷 −optimal design. The optimal variance 

corresponding to 𝐷 −optimal was calculated as. 

𝑉(∅0) = (𝑡𝑟𝑎𝑐𝑒 𝐶𝑑)
1

𝑆      (3.31) 

and the relative efficiency of the general to D-optimal design is 

𝜙𝐷𝑒𝑓𝑓(𝜉) =
(det  𝐶)

1
𝑆 

(det𝐶𝑑)
1
𝑆

      (3.32). 

3.2.2. 𝑬 −Optimal Efficiency  

The minimum Eigen value of the moment matrix of the general design was obtained 

as 𝜆𝑚𝑖𝑛(𝐶) with a corresponding normalized eigenvector 𝑍. Since the minimum Eigen 

value had multiplicity one, there exists a matrix 𝐸 where  

𝐸 =
𝑧𝑧′

‖𝑧‖
        (3.33) 

of trace one such that 𝑥𝑖
′𝐸𝑥𝑖 ≤ 𝜆𝑚𝑖𝑛(𝐶) for all 𝑥𝑖 ∈ χ which was used to determine 

the 𝐸 −optimal weights corresponding to the factorial and axial parts of the design. 

The optimal variance corresponding to the 𝐸 −optimal design is the minimum Eigen 

value of the resulting moment matrix of the design i.e. 𝜆𝑚𝑖𝑛(𝐶𝑒) where  

𝐶𝑒 = 𝐸
′𝐸/𝑁        (3.34) 

and 𝑁 is the number of rows of matrix 𝐸 .The E- efficiency of the general to the 

𝐸 −optimal design was obtained as  

𝜙𝐸𝑒𝑓𝑓 =
𝜆𝑚𝑖𝑛(𝐶)

𝜆𝑚𝑖𝑛(𝐶𝑒)
      (3.35)  
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3.2.3.𝑨 −Optimal Efficiency 

The 𝐵𝑎 matrix for computing the 𝐴 −optimal weight was obtained by putting 𝑝 = −1 

in equation (3.25) so that 

𝐵𝑎 = 𝑈𝑈′       (3.36) 

The 𝐴 −optimal factorial weight (𝐴𝑓𝑤) was obtained as 

𝐴𝑓𝑤 =
√𝑏11

∑ √𝑏𝑗𝑗𝑗≤𝑁
       (3.37) 

while the weight corresponding to axial part 

𝐴𝑎𝑤 =
√𝑏𝑁𝑁

∑ √𝑏𝑗𝑗𝑗≤𝑁
.       (3.38) 

Where 𝑏11, … 𝑏𝑁𝑁 are the diagonal elements of matrix 𝐵𝑎. The 𝐴 −optimal design was 

obtained by replicating the factorial and axial parts as per the weights obtained above 

to give the design matrix 𝑋𝑎 which was used to obtain the moment matrix 

 𝐶𝑎 =
𝑋𝑎
′𝑋𝑎

𝑁𝑎
        (3.39) 

where 𝑁𝑎 was the number of runs in the 𝐴 −optimal design. The optimal variance 

corresponding to the 𝐴 −optimal design is given by equation (3.40) 

𝑉(∅−1) = (
1

𝑆
𝑡𝑟𝑎𝑐𝑒 𝐶𝑎

−1)
−1

= (
1

𝑆
(∑ √𝑏𝑗𝑗𝑗≤𝑁 )

2
)
−1

  (3.40) 

The efficiency of the general design to the 𝐴 −optimal was obtained as  

𝜑𝐴𝑒𝑓𝑓 =
(
1

𝑆
𝑡𝑟𝑎𝑐𝑒 𝐶−1)

−1

(
1

𝑆
𝑡𝑟𝑎𝑐𝑒 𝐶𝑎

−1)
−1      (3.41) 
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3.2.4. 𝑻 −Optimal Efficiency 

To compute the weights corresponding to the 𝑇 −optimal design 𝑝 is set at one in 

equation (3.25) and hence the 𝐵𝑡 matrix is given as 

 𝐵𝑡 = 𝑈𝐶
2𝑈′       (3.42) 

Factorial weight corresponding to 𝑇 −optimal is 

 𝑇𝑓𝑤 =
√𝑏11

∑ √𝑏𝑗𝑗𝑗≤𝑁
       (3.43) 

while the weight corresponding to axial part is 

 𝑇𝑎𝑤 =
√𝑏𝑁𝑁

∑ √𝑏𝑗𝑗𝑗≤𝑁
.      (3.44)  

Where 𝑏11, … 𝑏𝑁𝑁 are the diagonal elements of matrix 𝐵𝑡. The 𝑇 −optimal design was 

obtained by replicating the factorial and axial parts as per the weights obtained as 

above to give the design matrix 𝑋𝑡 which was used to obtain the moment matrix 𝐶𝑡 =

𝑋𝑡
′𝑋𝑡

𝑁𝑡
 where 𝑁𝑡 was the number of runs in the 𝑇 −optimal design. The optimal variance 

corresponding to the 𝑇 −optimal design was given by  

𝑉(∅1) = (
1

𝑆
𝑡𝑟𝑎𝑐𝑒 𝐶𝑡

1)
1

= (
1

𝑆
(∑ √𝑏𝑗𝑗𝑗≤𝑁 )

2
)
1

   (3.45) 

The T-efficiency for T-optimal designs with the moment matrix 𝐶𝑡 and the general 

design with moment matrix C is given as 

𝜙(𝐶)

𝜙(𝐶𝑡)
=

{
1

𝑆
𝑡𝑟𝑎𝑐𝑒𝐶}

{
1

𝑆
𝑡𝑟𝑎𝑐𝑒𝐶𝑡}

      (3.46) 

Where 𝑠  is the number of parameters in the model. 
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3.3 Substrate and Effects of Factors on Fermentation.  

The challenges of municipal wastes disposal and the health risks these wastes pose to 

the urban dwellers and the need for alternative forms of energy are serious issues that 

require attention. Pineapple waste is one of the main municipal wastes in Thika town 

due to the large scale cultivation of pineapples by plantation firms and the 

surrounding farms of the local community. The high amount of reducing sugars in 

pineapple peels makes it an ideal raw material for bioethanol production. Zentou et 

al., (2017) observed that there are many factors that influence the process of 

fermentation such as substrate concentration, temperature, fermentation period, pH of 

the fermentation medium, yeast concentration e.t.c. The optimal sugar concentration 

depends primarily on the physiological properties of the yeast; a high sugar 

concentration can create an extracellular osmotic pressure greater than that of the 

intracellular environment which makes the water in the cell to diffuse through a 

membrane of a hypotonic solution to a hypertonic solution Klis, et al,. (2006). In the 

very dilute sugar solution; water passes from the external medium to the intracellular 

environment which creates internal pressure leading to swelling and bursting of the 

cells. Moreover, an increase in initial sugar concentration increases the concentration 

of product (ethanol) presence of which has been shown to have an inhibition effect on 

yeast growth and fermentation activity which totally stops at high ethanol 

concentration Zhang et al., (2015). There are many parameters which can affect the 

enzymatic activities. To achieve the most effective productivity, the appropriate 

parameters, which can maximize the enzymatic activities and minimize the cost, are 

required. In an ethanol industry, the most closely controlled parameters are 

temperature and pH. Basically, higher temperatures give higher productivity. 

However, above a certain temperature, the enzyme starts losing its activity. This is 
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because the protein form of the enzyme is broken by the heat. Too high temperature 

kills yeast, and low temperature slows down yeast activity. Thus, to keep a specific 

range of temperature is vital to ethanol production. Also, an enzyme has an optimal 

pH range. In the range, the enzyme shows high ethanol production. However, if the 

pH changes drastically from the range, the enzyme loses its activity again. This 

phenomenon is same as one with high temperature, that is to say, the extreme pH can 

break enzyme formation and it cannot be recovered. Yeast is a facultative anaerobe. 

In an aerobic environment, it converts sugars into carbon dioxide and water. In an 

anaerobic environment, it converts sugars into carbon dioxide and ethanol.  

3.3.1 Materials and Substrate Preparations.  

The study used pineapple peels for fermentation. The peels were obtained from a local 

market in Thika town. The peels were sun dried for three days and then oven dried at 

350C for three hours and milled into fine particles using a Ramtons fruit blender. 40g 

of the mill was carefully weighed using an electronic balance (type AY220 number 

D440620174 of capacity 220g with a reliability index of 0.1mg (manufactured by 

Shimadzu Corporation). The mass was dissolved in 1000mL of distilled water and 

immediately pre-treated at 100 ºC for 240 minutes in an incubator under continuous 

mixing to inactivate endogenous enzymes and reduce microbial spoilage. The content 

was allowed to come to room temperature and the filtrate settled at the bottom of the 

glass jar. The pH was measured using a pH meter model number LMPH-10 Mark 

LABMAN serial number L9254 and was found to be 3.95. Batch fermentations was 

carried out in 250 ml conical flasks fitted with rubber stoppers and clearly marked 

with stickers indicating run number, required fermentation time, pH, temperature and 

concentration of substrate. Five batches (as per the design points) of 250 ml in conical 

flasks of the pre-treated substrate were prepared and concentrations varied by 



40 
 

 
 

appropriately diluting using distilled water, further five other 100mL beakers were 

used where substrates with various concentration were placed in and pH adjusted by 

adding drops of 0.1M Sodium hydroxide to increase it from 3.95 which was found to 

be the pH of the pre-treated substrate. Then 10ml of these substrates with 

concentrations and pH’s adjusted as per the experimental design points were now 

drawn using a Pipette and placed in the marked 250ml conical flasks of the 40 

experimental runs. The fermentation started with addition of 10 ml of Saccharomyces 

Cerevisiae inoculum (107  cells per ml) which was prepared by dissolving 5g of 

Brewer’s yeast in 1000mL of distilled water to the medium. The yeast contains an 

enzyme called invertase, which acts as a catalyst and helps to convert the sucrose 

sugars into glucose and fructose (both 𝐶6𝐻12𝑂6). One mole of glucose is converted 

into two moles of ethanol and two moles  of carbon dioxide in the first stage. In stage 

two, fructose and glucose react with another enzyme called zymase, which is also 

contained in the yeast to produce ethanol and carbon dioxide. Yeasts mainly 

metabolize glucose and fructose to form pyruvic acid, but the pyruvic acid generated 

is decarboxylated to acetaldehyde which then experiences dehydrogenation to ethanol. 

Yeasts often used in alcoholic fermentation are Saccharomyces cerevisiae, because it 

is highly tolerant to alcohol (12-18% v / v), resistant to high sugar levels and remains 

active in the fermentation at a temperature of 4-32℃. The fermentation process takes 

around three days to four days to be complete and is carried out at a temperature of 

between25 − 400𝐶. The ethanol, which is produced from the fermentation process, 

still contains a significant quantity of water, which must be removed using the 

fractional distillation process. The process works by boiling the water and ethanol 

mixture. Since ethanol has a lower boiling point (78.30𝐶) compared to that of water 

( 1000𝐶 ), the ethanol turns into the vapour state before the water and can be 

http://en.wikipedia.org/wiki/Mole_(unit)
http://en.wikipedia.org/wiki/Ethanol
http://en.wikipedia.org/wiki/Carbon_dioxide
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condensed and separated.For a fermentation process to be viable for generation of 

ethanol from lignocellulose, it must produce good yield of the product, at high rate, 

and generate concentrations that are economically recoverable. The utilization of 

glucose, xylose, mannose, galactose, arabinose, and rhamnose, in the presence of 

acetic, ferulic acid and a variety of degradation products from thermo-chemical 

pretreatment is a challange. Saccharomyces cerevisiae is a model eukaryotic organism, 

often used in research because it is easy to manipulate and culture. Being a eukaryotic 

cell it is similar in structure to human cells. Yeast is widely used in industries to 

manufacture enzymes and proteins for beer or wine making because it metabolizes 

glucose to ethanol. A strain of yeast called Baker’s yeast is commonly used in 

leavening of bread and bakery products. This is because it is able to convert sugars 

present in dough to carbon dioxide and ethanol. The same species of yeast has a strain 

referred to as brewers yeast that was used in this fermentation process. The contents 

were placed in a rotation shaker at 30 rpm for two hours. Incubation was performed in 

four shaking incubators at 200rpm in Mount Kenya university analytical chemistry 

laboratories set at different temperatures as per the requirements and samples for 

analysis were taken after 24, 31.5,48, 60.9 and 72hours at different prescribed periods. 

Broth samples were drawn from the fermentation flasks using a 10 ml syringe: The 

drawn samples were immediately frozen at -10 ºC in a deep freezer until analysis 

time.  

3.3.2 Experimental Set-Up for Ethanol Determination 

Analysis of ethanol content in the sample was by the method of redox back titration as 

put forward by Krakwowiak et al., (1997) where for sharp end points detections 

during titrations, dilution of  the fermented samples in the ratio of one to ten was 

necessary. Three samples of 1ml of the diluted sample were drawn using a micro 
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pippete and placed in a 5ml beaker (sample holder) and 10ml of acidified potassium 

dichromate (0.01M in 5.0M sulphuric acid) prepared by putting 1000 ml of distilled 

water in a 2000ml volumetric flask followed by slowly adding 543.5 ml of 

concentrated sulphuric acid with constant swirling and the flask being cooled under 

cold running tap water and 5.88g of potassium dichromate was carefully weighed and 

added into the cooled solution and the content was topped up to the mark with 

distilled water was placed in a 250ml conical flasks with matching rubber stoppers as 

shown in Figure 3.1 and the fermented samples were suspended over the dichromate 

for overnight.Three samples from each experimental run were prepared since the entire 

content of the conical flask was used in the titration. Then water and ethanol from the 

sample slowly evaporated from the sample holder and ethanol was oxidized to ethanoic 

acid by the acidified Potassium dichromate, the set up was left in a water bath at  

250C − 300C  degrees. After overnight, the flask was allowed to come to room 

temperature and the stopper loosened carefully where sample holder was removed and 

discarded.  

: 

Figure 3.1: Experimental set-up 
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The walls of the flasks were rinsed with distilled water then 100ml of distilled 

water was added turning the contents yellow in colour. Further 1ml of 1.2 molar 

Potassium iodide prepared by dissolving 49.8 g in a 250 volumetric flask and 

topping up to the mark using distilled water was added turning the contents dark 

brown and the flask swirled to mix. Ethanol is oxidized to acetaldehyde acid by 

reacting it with an excess of acidified Potassium dichromate solution as in equation 

(3.47) 

2𝐶𝑟2𝑂7
2− + 16𝐻+ + 3𝐶2𝐻5𝑂𝐻     

𝑦𝑖𝑒𝑙𝑑𝑠
→      4𝐶𝑟3+ + 11𝐻2𝑂 + 3𝐶𝐻3COOH (3.47) 

The excess potassium dichromate is oxidized by potassium iodide to produce 

iodine as in equation (3.48)  

Cr2O7
2− + 14H+ + 6I−    

yields
→     2Cr3+ + 7H2O + 3I2   (3.48) 

The iodine produced is then titrated with standard sodium thiosulfate (𝑁𝑎2𝑆𝑜3
2−𝑂𝐻) 

solution (0.03molar) equation (3.49) prepared by placing 14.89g of sodium 

thiosulfate in a 2000L volumetric flask and adding distilled water while swirling  to 

dissolve it and the content topped up to the mark.  

I2 + 2S2O3
2−

yields
→    2I− + S4O6

2−    (3.49) 

The brown color of the solution fades to pale-yellow and upon addition of Starch 

indicator solution (1.0 % starch solution) prepared by weighing 2g of soluble starch 

and dissolving it in 200ml of distilled water, the solution takes a blue-black color as a 

result of formation of starch-iodine complex and as more thiosulfate is added near 

the end-point, the blue-black color of iodine complex fades and the end-point of 

titration is reached just when the enough thiosulfate is added to react with all the 

iodine present and the solution becomes colorless. Three concordant results were 
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obtained (titers agreeing to within 0.1ml). One blank titration was carried out to inform 

us of how much acid dichromate was present at the start as no alcohol had been added it 

meant all the amount of dichromate was still present. To determine the amount of 

ethanol in the sample, the average volume of sodium thiosulfate used in titration of the 

sample is subtracted from the average volume of sodium thiosulfate used in titrating the 

blank sample and the corresponding moles are converted into grams per liter of 

substrate.  

3.3.3 Modelling Ethanol Yield 

Laboratory scale experimental data were fit to the design to study the effects of 

fermentation time, initial pH of the fermentation broth, incubation temperature and 

initial substrate concentration using a second order model equation (3.3) within the 

region of interest as shown in table 3.1 

Table 3.1: Factors Settings in Coded and Natural Levels   

 

Coded Levels Time(hrs.) pH  Temp(0C) Sub-Con(g/L) 

2.116 

1.137 

0 

-1.137 

-2.116 

 72 

 60.9 

 48 

 35.1 

 24 

7 

6.3 

5.5 

4.7 

4 

40 

36.5 

32.5 

28.5 

25 

    40 

    35.4 

    30 

     24.6 

     20 

 
The purpose of coding was to make mathematical progression easy. The factors were 

rescaled and therefore zero is in the middle of the center of the design while ±1.137 

and ±2.116 are the distances from the center with directions which correspond to the 

factorial and axial parts of the design respectively. The natural variables 𝑥𝑖  for 𝑖 =

1,2,3,4 factors were converted into coded variables 𝜏𝑗 for  𝑗 = 1,2,3,4 𝑎𝑛𝑑 5 using the 

relationship in equation (3.50) 
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   𝜏𝑗 =
𝜉𝑗−[max𝑥𝑖+min𝑥𝑖]/2

[max𝑥𝑖−min𝑥𝑖]/(2.116∗2)
     (3.50) 

The maximum and minimum values of 𝑥𝑖cover the range of dissimilarity in the input 

variables where 𝜉𝑗 represents the natural variable corresponding to each coded level. 

The output response corresponding to each combination of input parameters was the 

mean Bioethanol produced in 𝑔/𝐿 per experimental run. 

3.3.4 The Adequacy of the Fitted Model  

The tests of validity of the fitted model provide an important examination to 

determine whether it offers an adequate approximation of the true response surface. 

Analysis of variance (anova), Tests for Significance of Regression coefficients, 

normality test and coefficient of determination were used to examine the fitted second 

order model. 

i). Normality Test: 

This test requires the error term 𝑒𝑖
′𝑠 to be normally distributed with a mean of zero 

and a variance of 𝛿2 .This was achieved by plotting normal probability plot of 

residuals. If the residuals plots, approximately lie along a straight line, then the 

normality assumption is satisfied 

𝑒𝑖 = 𝑌𝑖 − �̂�𝑖       (3.51) 

If  𝑒𝑖~𝑁(0, 𝛿
2) , then the observations 𝑌𝑖′𝑠  are also normally and independently 

distributed therefore test for the significance of the regression can be applied to 

determine if the relationship between the dependent and independent variables exists.  
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 ii). Analysis of Variance for Significance of Regression 

Table 3.2:Anova table 

 

Variation 

Source 

Degrees of 

Freedom 

Sum of Squares MSS F 

Regression 1p   
2ˆ( )

N

u

u

SSR y y   
/ 1SSR P  /MSSR MSSE  

Error N p  
2ˆ( )

N

u

u

SSE y y   
/SSE N p   

Total 1N   
2

1

( )
N

u

u

SST y y


   
  

 

The error sum of squares (SSE) is a measure of the amount of variation explained by 

the regression model, the smaller the SSE the better the regression model. 

𝑆𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝑅      (3.52) 

 Where 

 𝑆𝑆𝑇 = 𝑌′𝑌 −
(∑𝑌𝑖)

𝑛

2

       (3.53) 

𝑆𝑆𝑅 = �̂�𝑋′𝑌 −
(∑𝑌𝑖)

2

𝑛
      (3.54) 

Hence 

 𝑆𝑆𝐸 = 𝑌′𝑌 − �̂�𝑋′𝑌      (3.55) 

iii). Tests for Significance of Regression  

A good estimated regression model will explain the variation of the dependent 

variable in a sample. Test of hypotheses about model parameters helps an 

experimenter to measure the effectiveness of the model. In general, the 𝐹 −test is 

used for more than one coefficient or joint hypotheses and it is applied for testing the 

significance of the parameters of either the main effects or of two way interactions 

parameters or the parameters of the quadratic effects.  

The hypotheses to be tested are  
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𝐻0: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 Verses 𝐻1: 𝛽𝑖 ≠ 0 for at least one 𝑖.  (3.56) 

Then comparison of the 𝐹  value to the critical 𝐹𝛼,𝑝,𝑁−𝑝−1  is made and if 𝐹𝑐𝑎𝑙 > 

𝐹𝛼,𝑝,𝑁−𝑝−1, 𝐻0 is rejected or still reject the null hypotheses when the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 for 

𝐹𝑐𝑎𝑙 is less than the level of significance 𝛼. When the hypotheses test is particular to 

one coefficient at a time , 𝑡 −test is employed. For example to test the significance of 

contribution of variable 𝑖 in a model the appropriate hypotheses is 𝐻0: 𝛽𝑖 = 0 verses 

𝐻1: 𝛽𝑖 ≠ 0 and the test for this hypotheses is called the 𝑡 −statistic expressed as  

𝑡0 =
𝛽�̂�

√𝜎2̂𝑤𝑗𝑗

        (3.57) 

Where 𝑤𝑗𝑗 is the diagonal element of matrix (𝑋′𝑋)−1 appendix (1.C) corresponding 

to 𝛽�̂� the denominator of equation (3.57) being standard error of coefficient 𝛽�̂�. The 

statistic 𝑡0  is compared with critical 𝑡 − values and null hypothesis is rejected 

whenever ‖𝑡0‖ > 𝑡(𝛼
2
,𝑁−𝑞−1) with the implication that the variable contributes 

significantly to the model. 

iv). Coefficient of Determination 

In order to determine how well the estimated model fits the data, R-squared value can 

be used. The R-squared lies in the interval [0, 1], when it is closer to one, the better 

the regression equation fits the sample data. R-squared Measures the percentage of the 

variation of 𝑌 around �̅�  that is explained by the regression equation, however adding 

a variable to the model will always increase R-squared regardless of whether or not 

the variable is statistically significant. Thus adjusted R-squared is preferred since 

when variables are added to the model, adjusted R-Squared will not necessarily 

increase in fact it decreases if unnecessary variables are added. 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=
𝑆𝑆𝑇−𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝐸

𝑆𝑆𝑇
      (3.58) 
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�̅�2 = 1 −
𝑆𝑆𝐸

𝑁−𝑝−1⁄

𝑆𝑆𝑇
𝑁−1⁄

      (3.59) 

Where equation (3.58) represents the formula for finding R-squared and equation 

(3.59) is the formula for adjusted R-squared. When both are close to one it means 

estimated regression equation fits the data well. 

3.4 Optimization of Bioethanol Yield  

Optimization is the synonym of the word maximization or minimization that means 

choosing the best option Montgomery, (2005).It is a process of getting the optimal 

setting of an experiment.Optimization plays a key role in any response surface 

investigation. One of the main objectives of modelling the response is to use the fitted 

model in determining optimum conditions on the model’s control variables that result 

in a maximum (or minimum) response over a certain region of interest, R. This, of 

course, assumes that the model has been screened to determine its suitability for 

providing an adequate representation of the mean response over the region R. Quite 

often, a second-degree model is employed since it incorporates curvature after a series 

of experiments have been sequentially carried out leading up to a region that is 

believed to contain the location of the optimum response,  Khuri, (2017).  RSM is 

equipped with statistical tools for determining the significance of a factor over a 

response. The evaluation of factors using the RSM uses experimental design in order 

to distribute the selected variables within the boundaries of the design. The basic 

strategy involves four steps as put forward by Box and Wilson, (1951) as follows: 

i. Move into the optimum region. 

ii. Study the behavior of the response in the optimum region. 

iii. Estimate the optimum conditions. 

iv. Verify the model. 
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Model-based Optimization uses model fits to identify the system optimum. 

Determination of the optimum type, is by plotting contour and image plots in case of 

two factors, and response surface plots or the analytical determination using calculus 

method.  

3.4.1 Response Surface Plots 

The location of the stationary point which may be characterized as maxima, minima 

or a saddle point is a point in the levels of  𝑥𝑖
′𝑠  𝑖 = 1,2,… , 𝑘, that optimize response. 

This point if it exists is a point in levels of 𝑥𝑖′𝑠 for which the partial derivatives are 

 
𝛿�̂�

𝛿𝑥1
=

𝛿�̂�

𝛿𝑥2
= ⋯ =

𝛿�̂�

𝛿𝑥𝑘
= 0      (3.60) 

This point say 𝑥1𝑠, 𝑥2𝑠, … , 𝑥𝑘𝑠 is called the stationary point. By drawing contour plots 

using computer soft wares, experimenter can usually characterize the shape of the 

response surface and locate the optimum with reasonable precision Montgomery, 

(2005).Single factor experiments were performed to determine the appropriate range 

of conditions for ethanol production using pineapple waste where temperature, 

incubation time, substrate concentration and pH levels were considered. Each input 

variable was varied over a range of values for each level keeping others constant.  

The function 𝑓(𝑥1 , 𝑥2)  that relates the control variables to the response 𝑌can be 

plotted as shown in Figure 3.2  

 
 

Figure 3.2: Response Surface Plot (Montgomery, 2005) 
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In this graph, each value of 𝑥1and 𝑥2  generates a y-value. This three-dimensional 

graph shows the response surface from the side and it is called a response surface plot. 

Sometimes, it is less complicated to view the response surface in two-dimensional 

graphs. The contour plots show contour lines of 𝑥1 and 𝑥2 pairs that have the same 

response value y. An example of contour plot is shown in Figure 3.3. 

 
 

Figure 3.3: Contour Plot (Montgomery, 2005) 

 
In order to understand the surface of a response, graphs are helpful tools, but when 

there are more than two independent variables, graphs are difficult or almost 

impossible to use to illustrate the response surface, since it is beyond three-

dimensions. For this reason, response surface models are essential for analyzing the 

unknown function𝑓.The exploration of an experimental region using response surface 

methods revolves around the assumption that the expected response, E(y), is a 

function of controllable variables 𝑥1, 𝑥2, … , 𝑥𝑘 where the 𝑥𝑖
′𝑠 are suitably scaled and 

centered. Linear transformations of the independent variables with aim of studying 

RSM is accomplished by 
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i. Understanding the topography of the response surface (local maximum, local 

minimum, ridge lines), and 

ii. Finding the region where the optimal response occurs and the goal is to move 

rapidly and efficiently along a path steepest to get to a maximum or a 

minimum response so that the response is optimized Montgomery, (2005).  

3.4.2 Optimization Analytically  

The optimum point may be determined analytically by using the equations (3.61)  

�̂� = �̂�0 + 𝑋
′𝑏 + 𝑋′𝐵𝑋      (3.61) 

Which can be written in matrix form as 

Where   𝑋 = [

𝑥1
𝑥2
⋮
𝑥𝑘

], 𝑏 =

[
 
 
 
�̂�1
�̂�2
⋮
�̂�𝑘]
 
 
 

 and 𝐵 =

[
 
 
 
 �̂�11 �̂�12 2⁄ … �̂�1𝑘 2⁄

�̂�22 … �̂�2𝑘 2⁄

𝑠𝑦𝑚
⋱ ⋮
       �̂�𝑘𝑘 ]

 
 
 
 

 

 

Where 𝑏  is a 𝑘 ×  1 vector of first order regression coefficients and 𝐵  is a 𝑘 × 𝑘 

symmetric matrix whose main diagonal elements are the pure quadratic coefficients 

𝛽𝑖𝑖 and whose off diagonal elements are one-half the mixed quadratic coefficients 𝛽𝑖𝑗 

(𝑖 ≠ 𝑗). The derivative of �̂� with respect to vector 𝑋 equated to zero is  

𝛿�̂�

𝛿𝑋
= 𝑏 + 2𝐵𝑋=0       (3.62) 

The stationary point is  

𝑋𝑠 = −
1

2
𝐵−1𝑏       (3.63) 

The predicted response is  

�̂� = �̂�0 +
1

2
𝑋𝑠
′𝑏       (3.64) 

Once the stationary point is found we characterized the response surface in the 

immediate vicinity of this point i.e. determined whether the point is a point of 
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maximum, minimum or saddle point. Also to study the relative sensitivity of the 

response to the variables 𝑥1, 𝑥2, … , 𝑥𝑘  contour plots of the fitted model whose 

construction and interpretation is relatively easy when two or three response variables 

are involved were examined. A formal analysis called canonical analysis was used 

which involved transforming model into a new co-ordinate system with the origin at 

the stationary point and then rotating the axes of this system until they are parallel to 

the principal axis of the fitted response surface which results into fitted model of the 

form 

�̂� = �̂�𝑠 + 𝜆1𝑤1
2 + 𝜆2𝑤2

2 +⋯+ 𝜆𝑘𝑤𝑘
2   (3.65) 

Where 𝑤𝑖’s in equation (3.65) are the transformed independent variables and 𝜆𝑖’s the 

Eigen values or characteristic roots of matrix 𝐵  (𝐵𝑋 = 𝜆𝑋   ), equation (3.65) is 

known as the “canonical form “of the model. The nature of the response surface was 

determined from the stationary points and the signs and magnitude of the 𝜆𝑖
′𝑠. If all 

the eigenvalues are negative, then 𝑥𝑠is a point of maximum and it’s a minimum point 

if all are positive and 𝑥𝑠 is a saddle point if 𝜆′s are of mixed signs.  

3.4.3 Modelling and Optimization using E-Optimal Design 

The most efficient design relative to the general design which was the E-optimal 

design was employed in modelling the effects of the process variables on the ethanol 

production as well as the optimizing ethanol yield. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.0 Introduction  

In this chapter, 𝐷−,𝐴−, 𝐸 −  𝑎𝑛𝑑 𝑇 − optimal values of the general design, the 

weights corresponding to 𝐷−,𝐴−, 𝐸 − 𝑎𝑛𝑑 𝑇 −optimal designs as well as the optimal 

variances of these optimal designs and relative efficiencies to the general design were 

computed and presented. The experimental, predicted as well residues values were 

presented. Fitted second order model developed was presented and results of its 

adequacy check displayed in form of plot of residuals versus fitted values, normal 

probability plot of the residuals, standardized residues against run numbers as well as 

plot of predicted versus actual values. The images, contours and response surface 

plots for the yield were also presented. Steepest ascent and analytical determination of 

the stationary point and the maximum yield results are presented. 

4.1 The 𝑫−,𝑨−, 𝑬 − 𝒂𝒏𝒅 𝑻 −Optimal Values of the General Design.  

 The general design matrix 𝑋  was obtained by substituting in the values of  𝑎 =

±1.137   and 𝑏 = ±2.116  as the factorial and axial points of the design as per 

equation (3.9) and fitting a full second order model. The model matrix 𝑋 is displayed 

in Appendix table. A. The moment matrix for the general design with 𝑁 = 40 is 𝑀𝐺  

given in Table 4.1. 
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Table 4.1: Moment Matrix of the General Second Order Design 

























































005.2000.0669.0000.0000.0669.0000.0000.0000.0669.0000.0000.0000.0000.0999.0

000.0669.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

669.0000.0005.2000.0000.0669.0000.0000.0000.0669.0000.0000.0000.0000.0999.0

000.0000.0000.0669.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0669.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

669.0000.0669.0000.0000.0005.2000.0000.0000.0669.0000.0000.0000.0000.0999.0

000.0000.0000.0000.0000.0000.0669.0000.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0669.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0669.0000.0000.0000.0000.0000.0000.0

669.0000.0669.0000.0000.0669.0000.0000.0000.0005.2000.0000.000.0000.0999.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0999.0000.000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0999.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0999.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0999.0000.0

999.0000.0999.0000.0000.0999.0000.0000.0000.0999.0000.0000.0000.0000.0000.1

GM

 

4.1.1 𝑫−Optimal Value for the General Design 

Determinant criterion was obtained using equation (3.17) with 𝐶 being the moment 

matrix of the design 𝑀𝐺  and 𝑠 = 15  being the number of parameters in the model. 

𝜙0(𝑀𝐺) = (det  𝑀𝐺)
1

15 = 0.6796529    (4.1) 

4.1.2 𝑬 −Optimal Value for the General Design  

The smallest Eigen-value criterion 𝜙−∞(𝐶) = 𝜆𝑚𝑖𝑛(𝐶) and 𝐶 = 𝑀𝐺  therefore using 

equation (3.20) the 𝐸 −optimal value becomes 

𝜙−∞(𝐶) = 𝜆𝑚𝑖𝑛(𝐶) = 𝜆𝑚𝑖𝑛(𝑀𝐺) = 0.002856958  (4.2)  

4.1.3 𝐀 −Optimal Value for the General Design  

The average variance criterion (𝐴 − 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒) is as per equation (3.21) where 

𝐶 as above is the moment matrix 𝑀𝐺  and 𝑠 is the number of parameters in the model 

to be estimated. 

𝜙−1(𝐶) = (
1

15
𝑡𝑟𝑎𝑐𝑒 𝑀𝐺

−1)
−1

=  0.04104631  (4.3) 
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4.1.4  𝑻 −Optimal Value for the General Design 

The trace criterion is useless if the regression vectors 𝑥 ∈ 𝜒 have a constant squared 

length 𝛼 say, then the moment matrix 𝑀(𝜉) of any design 𝜉 ∈ Ξ satisfies 

Trace 𝑀(𝜉) = 𝑡𝑟𝑎𝑐𝑒  ∫𝜒𝜒𝜒
′𝑑𝜉 = 𝑡𝑟𝑎𝑐𝑒∫𝜒𝜒

′𝜒 𝑑𝜉 = 𝑐  whence 𝜙1constant providing 

no distinction whatsoever, according to Pukelsheim, (2006) but in this case, the sum 

of the squares of the regression vectors 𝑥 ∈ 𝜒 have different values as follows  

∑𝑥0
2
= ∑𝑥1

2 = ∑𝑥2
2 = ∑𝑥3

2 = ∑𝑥4
2 = 40, 

∑(𝑥𝑖
2)2 =  80.28822  for  = 1,2,3, &4 ,     

∑(𝑥𝑖𝑥𝑗)
2 = 26.76274 .     (4.4)  

Hence the trace will be of significance as an optimality criterion. The trace criterion 

with 𝐶 = 𝑀𝐺  and 𝑠 being the number of parameters to be estimated, the 𝑇 −optimal 

value became 

𝜙1(𝐶) =
1

𝑠
𝑡𝑟𝑎𝑐𝑒 (𝐶) =

1

15
𝑡𝑟𝑎𝑐𝑒 (𝑀𝐺) = 1.135448 (4.5) 

Table 4.2: The Four Optimality Criteria for the General Design  

 

              𝐷 −                            𝐴 −                        𝐸 −                                 𝑇 − 

       0.6796529        0.04104631     0.002856958    1.135448 

 

4.2 Relative Efficiencies  of the Optimal Designs  

To obtain an optimal design, equation (3.24) was used to determine the number of 

times each regression vector would be run (i.e. the weight) and the corresponding 𝐵 

matrices obtained as per equation (3.25) and optimal values were obtained using 

equation (3.26)  
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4.2.1. 𝑫 −Optimal Design and its Relative Efficiency 

The weight corresponding to factorial part is 0.02387036 and that one corresponding 

to axial part is 0.02951858 as per equation (3.24),Hence a 𝐷 −optimal design was a  

design with factorial part replicated approximately two times i.e. (𝑛𝑓 = 2) with the 

axial part being replicated three times (i.e.  𝑛𝑎 = 3) giving a design with 32 × 2 +

8 × 3 = 88 points. The 𝐷 −optimal moment matrix is 𝑀𝑑 =
1

88
𝑋′𝑋 is: 

Table 4.3: Moment Matrix for the D-Optimal Design. 

 

























































2809.20000.06082.00000.00000.06082.00000.00000.00000.06082.00000.00000.00000.00000.00109.1

0000.06082.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0

6082.00000.02809.20000.00000.06082.00000.00000.00000.06082.00000.00000.00000.00000.00109.1

0000.00000.00000.06082.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0

0000.00000.00000.00000.06082.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0

6082.00000.06082.00000.00000.02809.20000.00000.00000.06082.00000.00000.00000.00000.00109.1

0000.00000.00000.00000.00000.00000.06082.00000.00000.00000.00000.00000.00000.00000.00000.0

0000.00000.00000.00000.00000.00000.00000.06082.00000.00000.00000.00000.00000.00000.00000.0

0000.00000.00000.00000.00000.00000.00000.00000.06082.00000.00000.00000.00000.00000.00000.0

6082.00000.06082.00000.00000.06082.00000.00000.00000.02809.20000.00000.00000.00000.00109.1

0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00109.10000.00000.00000.00000.0

0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00109.10000.00000.00000.0

0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00109.10000.00000.0

0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00109.10000.0

0109.10000.00109.10000.00000.00109.10000.00000.00000.00109.10000.00000.00000.00000.00000.1

dM

 

The D-optimal value is 𝑉(∅0) = (det𝑀𝑑)
1/15 .Hence the optimal variance is 

𝑉(∅0) = 0.6965612, while the optimal value for the general design 

was  0.6796529 .Therefore the relative efficiency of the general design to the 

𝐷 −optimal design was obtained as per equation (3.28)  

𝜙𝑒𝑓𝑓(𝜉) =
0.6796529

0.6965612
= 97.714587031% ≅ 98%.  (4.6) 

4.2.2. 𝑬 − Optimal Design and its Efficiency 

The minimum Eigen value of the moment matrix of the general design is 

𝜆𝑚𝑖𝑛(𝑀𝐺) =   0.002893284 with a corresponding normalized Eigenvector: 
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 233.000.0233.000.000.0233.000.000.000.0233.000.000.000.000.0   895.0 Z

 

According to equation (3.33), the 𝐸  matrix for all 𝑥𝑖 for  𝑖 = 1,… ,32. 𝑥 ∈ χ , was 

obtained. Giving 𝑥′𝐸𝑥 = 0.0009351244 while for all 𝑥𝑖  and 𝑖 = 33,… ,40, we had  

𝑥′𝐸𝑥 = 0.01089277  which is greater than the minimum eigenvalue therefore the 

𝐸 −optimal design assigns a weight of one to the factorial part and zero to the axial 

part of the design. The moment matrix of the 𝐸 −optimal design is 𝑀𝑒 =
1

32
𝑋′𝑋   

Table 4.4: Moment Matrix for the E-Optimal Design 

 

























































255.1000.0836.0000.0000.0836.0000.0000.0000.0836.0000.0000.0000.0000.0970.0

000.0836.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

836.0000.0255.1000.0000.0836.0000.0000.0000.0836.0.000.0000.0000.0000.0970.0

000.0000.0000.0836.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0836.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

836.0000.0836.0000.0000.0255.1000.0000.0000.0836.0000.0000.0000.0000.0970.0

000.0000.0000.0000.0000.0000.0836.0000.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0836.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0836.0000.0000.0000.0000.0000.0000.0

836.0000.0836.0000.0000.0836.0000.0000.0000.0255.1000.0000.0000.0000.0970.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0970.0000.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0970.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0970.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0970.0000.0

970.0000.0970.0000.0000.0970.0000.0000.0000.0970.0000.0000.0000.0000.0000.1

eM

 

With an optimal variance of 0.4182000.The relative efficiency of the general to the 

𝜙−∞ −optimal design was obtained using equation (3.35) which was found to be 1%. 

4.2.3 𝑨 −Optimal Design and its Efficiency 

 For 𝐴 − optimal design, 𝑝 = −1 , in equation (3.25) the 𝐴 − optimal weights 

corresponding to factorial and axial parts are 0.01704711 and 0.05681391 

respectively. Therefore the  𝐴 −  optimal design was obtained by replicating the 

factorial part two times (i.e.𝑛𝑓 = 2) and the axial part six times (i.e. 𝑛𝑎 = 6 ) giving a 
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design with 32 × 2 + 8 × 6 = 112 and 𝐴 − optimal moment matrix was 𝑀𝐴 =

1

112
𝑋′𝑋   

Table 4.5: Moment Matrix for A-Optimal Design.  

 

























































8674.20000.04779.00000.00000.04779.00000.00000.00000.04779.00000.00000.00000.00000.00343.1

0000.04779.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0

4779.00000.08674.20000.00000.04779.00000.00000.00000.04779.00000.00000.00000.00000.00343.1

0000.00000.00000.04779.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0

0000.00000.00000.00000.04779.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0

4779.00000.04779.00000.00000.08674.20000.00000.00000.04779.00000.00000.00000.00000.00343.1

0000.00000.00000.00000.00000.00000.04779.00000.00000.00000.00000.00000.00000.00000.00000.0

0000.00000.00000.00000.00000.00000.00000.04779.00000.00000.00000.00000.00000.00000.00000.0

0000.00000.00000.00000.00000.00000.00000.00000.04779.00000.00000.00000.00000.00000.00000.0

4779.00000.04779.00000.00000.04779.00000.00000.00000.08674.20000.00000.00000.00000.00343.1

0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00343.10000.00000.00000.00000.0

0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00343.10000.00000.00000.0

0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00343.10000.00000.0

0000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00343.10000.0

0343.10000.00343.10000.00000.00343.10000.00000.00000.00343.10000.00000.00000.00000.00000.1

AM

 

The A-optimal variance was found to be   0.05798174 while the optimal value for the 

general design was 0.04154701. The relative efficiency of the general compared to the 

optimal was  0.71655334938 ≅ 71.7%. 

4.2.4 𝑻-Optimal Design and its Efficiency 

The 𝑇 −optimal weights corresponding to factorial and axial parts were 0.01691205 

and 0.05735179 respectively as per equations (3.22) when   𝑝 = 1, the 𝑇 −optimal 

design was approximated by replicating the factorial part of the general design two 

times and the axial part six times giving a design with a total of 32 × 2 + 8 × 6 =

112 runs .The T-optimal design moment matrix was found to be the same as the one 

in table 4.5. The 𝑇 −optimal variance was 1.29828. Relative efficiency of the general 

design to the optimal design was 
1.136227

1.29828
≅ 87.5%.As per equation (3.46). 
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4.3 Process Variables of Bioethanol Yield 

4.3.1 Ethanol Content Determination  

The volume of sodium thiosulfate used in titrating the blank sample was found to be 

9.7mL. From the reaction equation (3.49) six moles of 𝑁𝑎2𝑆𝑂3
2−is equivalent to one mole 

of 𝐶𝑟2𝑂7
2− and from equation (3.47) two moles of 𝐶𝑟2𝑂7

2−  is equivalent to three moles of 

𝐶2𝐻5𝑂𝐻  therefore one mole of  𝑁𝑎2𝑂3
2−  is equivalent to 0.25moles of C2H5OH. Let 

𝑥𝑚𝐿 be the average titer volume of three concordant titrations for sample 𝑖 , then the 

mass of ethanol in the sample is equal to (9.7 − 𝑥) × 0.03 ×
1

4
× 10 × 46 where 0.03 

is the moles of sodium thiosulfate while 
1

4
 is the equivalent moles of ethanol in the 

sample and 10 is the dilution factor and 46 is the mass in grams of one mole of 

ethanol (2 × 𝐶 = 24 + 5 × 𝐻 = 5 + 1 × 𝑂 = 16 + 1 × 𝐻 = 46).The procedure was 

applied for the forty experimental runs replicated thrice and the average per run is the 

observed yield of ethanol in g/L in table 4.6.  
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Table 4.6: Experimental, Estimated and Residuals Values Ethanol 

 

4.3.2 Modelling Ethanol Yield 

Based on the general Second order rotatable design constructed using balanced 

incomplete block design and observed yields, the statistical combinations of the 

variables in coded form along with the experimental and predicted data are presented 

in table 4.6. The fitted full second order model for the general design was obtained 

using R programming as equation (4.7). 
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𝑌 = 11.821 + 0.5127𝑋1 − 0.2687𝑋2 + 0.9937𝑋3 + 0.1089𝑋4 − 0.7590𝑋1𝑋2 +

 0.8654𝑋1𝑋3  + 0.2127𝑋1𝑋4 + 0.4448𝑋2𝑋3 +  1.1168𝑋2𝑋4 − 0.3723𝑋3𝑋4 −

1.03𝑋1
2 − 0.6274𝑋2

2  − 1.2102𝑋3
2 − 1.1382𝑋4

2    (4.7) 

The regression equation characterizes the influence of the different variables on 

bioethanol yield. Positive signs in front of the terms indicate synergetic effect while 

negative sign indicate antagonistic effects. The model shows that within the studied 

range of the variables, pH(𝑋2), had an antagonistic effect on ethanol yield of 0.2687 

while all the other variables had synergetic effect. Incubation temperature had the 

highest effect of 0.9937 followed by time while substrate concentration of the 

pineapple peel had the least effect. A comparison of the observed results between 

experimental and predicted readings showed a good matching in between and over the 

defined range. 

4.3.3 Adequacy of the Model 

i). Plot of Residuals versus Fitted Values 

If the fitted model is correct, and if the assumptions of normality for the errors are 

satisfied, then the residuals should be structure less, in particular they should be 

unrelated to any other variables including the response and the predicted values. A 

plot of the residuals versus fitted values should not reveal any obvious pattern. The 

normal probability plot, of the residuals approximate a straight line hence the model 

explains variations of the dependent variables in the sample meaning that the 

responses 𝑌𝑖 are also normally and independently distributed. 
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Figure 4.1: Plots of Residuals 

In Figure 4.1(b), the normal probability plot of standardized residuals clearly indicates 

a straight line and in figure 4.1(c), the standardized residuals are plotted against the 

run numbers and again the plot indicates that the points are randomly scattered within 

the constant range of residuals across the graph thus the model is adequate and finally 

the plot of predicted values against the experimental values figure 4.1(d) indicates a 

strong positive correlation and therefore there is no reason to suspect violation of 

independence or constant variance assumption.  
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ii). Regression Analysis and Anova  

Analysis of the fitted model to test whether the model adequately approximates 

bioethanol yield well was carried out using the anova and regression analysis whose 

R-out puts are displayed in tables 4.7 and 4.8 

Table 4.7: Call: Rsm (Formula = Y ~ So(X1, X2, X3, X4), Data = D3) 

 

             Estimate  Std. Error  t value  Pr(>|t|)     

 (Intercept)  11.82132     1.71799   6.8809  3.266e-07 *** 

X1          0.51267     0.10282  4.9861  3.864e-05 *** 

X2          -0.26866     0.10282  -2.6129   0.014978 *   

X3           0.99367    0.1028  9.6641  6.360e-10 *** 

X4           0.10893  0.10282  1.0594  0.299524     

X1:X2       -0.75903     0.12573  -6.0371  2.628e-06 *** 

X1:X3        0.86539    0.12573  6.8831   3.249e-07 *** 

X1:X4        0.21272    0.12573   1.6919  0.103088     

X2:X3        0.44478     0.12573   3.5377   0.001606 **  

X2:X4        1.11679   0.12573  8.8827  3.311e-09 *** 

X3:X4       -0.37226    0.12573  -2.9609   0.006632 **  

X1^2        -1.02999     0.43578  -2.3635   0.026185 *   

X2^2        -0.62737     0.43578  -1.4396  0.162377     

X3^2        -1.21016     0.43578  -2.7770  0.010248 *   

X4^2        -1.13815   0.43578  -2.6117   0.015017 *   

--Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.Multiple R-squared:  

0.9323,    Adjusted R-squared:  0.8944 F-statistic: 24.59 on 14 and 25 DF,  p-value: 

3.692e-11.Call: Analysis of variance showed that magnitude of the F-value 24.59 and 

the low probability value (< 0.0001), as proof of the significant model fit. Using the 

𝑡 −test statistics and 5% level of significance, the regression analysis indicates that 



64 
 

 
 

out of the four control variables, incubation time (𝑋1) and incubation temperature 

(𝑋3)were very positively significant to the yield of bioethanol with their  𝑃 −values 

of their 𝑡 −statistics being far much less than   0.001  the level of significance while 

initial PH (𝑋2)  had a significant negative effect at 𝑃 − value of 0.01  while the 

concentration of the substrate was not significant at 𝛼 = 5%. Therefore increase in 

incubation time  and temperature resulted in increased  bioethanol yield while 

increase in initial PH resulted in decrease of bioethanol production as indicated by the 

signs of their parameters in the model. The interactive effect of incubation 

temperature and time, initial PH and substrate concentration, had significant 

synergetic effect on bioethanol yield while time and pH had an antagonistic effect 

significant at 0.001 interactive effect of temperature and pH was also significant at 

0.01implying that increase in both incubation temperature and initial PH resulted in 

increase in ethanol yield. The intercept term of the model was significant at P-value of 

0.001 while the quadratic effects of time, temperature and substrate concentration 

were all significant at a P-value of 0.05 affecting ethanol yield antagonistically. The 

𝑡 −statitics values could also have been determined analytically using equation (3.57) 

as follows 

𝑡𝑋1 =
0.51267  

√0.4227×0.025 
= 4.987142     (4.8) 

The reduced model after removing the non-significant terms become 

 �̂� = 11.82 + 0.51𝑋1 − 0.27𝑋2 + 0.99𝑋3 + 0.11𝑋4 − 0.76𝑋1𝑋2 +  0.87𝑋1𝑋3  +

0.44𝑋2𝑋3 +  1.12𝑋2𝑋4 − 0.37𝑋3𝑋4 − 1.03𝑋1
2  − 1.21𝑋3

2 − 1.14𝑋4
2 (4.9) 

Equation (4.9) was used to obtain the estimated value of ethanol yield in table 4.6 
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To test the adequacy of the fitted model, analysis of variance and F-test were 

employed. The Anova for full second order model is given in Table 4.8  

Table 4.8: Analysis of Variance (Anova) 

Response:Y D.o.f   Sum Sq Mean Sq F value  Pr(>F) 

FO(X1, X2, X3, X4)   4 53.346 13.3364 31.5516 1.940e-09 

TWI(X1, X2, X3, X4)   6 78.988 13.1646 31.1451  1.944e-10 

PQ(X1, X2, X3, X4)     4 13.157   3.2894   7.7821 0.0003228 

Residuals 25 10.567 0.4227                     

Lack of fit          25 10.567 0.4227                     

Pure error           0 0.000                              

 

The results indicate that the F-ratio for main effects of the incubation time, initial PH, 

incubation temperature and substrate concentration was 31.5516 which is more than 

the F-table value at 5%  percent level of significance with 4  and 35  degrees of 

freedom i.e table 𝐹(5%, 4,35) = 2.69 , therefore we reject the the null hypothesis 

( 𝐻0: 𝛽1 = 𝛽2 = 𝛽3 = 𝛽4 = 0 𝑣𝑠 𝐻1: 𝛽𝑗 ≠ 0  for at least one of the regression 

parameters) of equality of the regression parameters at 5%  level of significance 

likewise for the two terms  interaction and quadratic regression parameters the null 

hypothesis ( 𝐻0 = 𝛽12 = 𝛽13 = 𝛽14 = 𝛽23 = 𝛽24 = 𝛽34 = 0, 𝐻0: 𝛽11 = 𝛽22 = 𝛽33 =

𝛽44 = 0) respectively of the equality of the parameters is rejected since the two F-

ratio values i.e. 31.1451  and 7.7821 have their P-values 1.944e−10 and 0.0003228 

which were both less than 𝛼 = 5% and the model is therefore considered adequate 

and since the second order terms of two-way interactions (TWI) and polynomial 

quadratics (PQ) terms contributed significantly to the model, canonical analysis was 

necessary in order to determine how well the estimated model fits the data, R-squared 

value was used. The value of the Multiple R-squared was 0.9323 and Adjusted R-

squared was  0.8944  which measure model fitting reliability and for the fitted model, 
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R-squared of 0.9323 indicates aptness of the model, Bhunia and Dey, (2012). Also 

most values of (Probability F) are less than 0.05, which confirms that the model terms 

are significant. Therefore only 6.8% of the total variation could not be explained by 

the model which ensures good adjustment of the model to experimental data. Model 

adequacy was also confirmed by the good agreement between the experimental data 

and predicted data as shown in Table 4.6. 

4.4 Optimization of Ethanol Yield 

4.4.1 Graphical Analysis 

For more understanding of ethanol yield under optimum conditions and interaction 

between the various independent variables within the given ranges, the second order 

model was used to build images, contours and response surface plots by RSM 

(response surface method). The three dimensional plots were built by fixing two of 

independent variables in their midpoint i.e. their stationary values and changing the 

other two variables over their experimental range. The resulting graphics show clear 

effects of initial incubation time, pH value, fermentation temperature and 

concentration of substrate on ethanol production. The effect of fermentation time and 

pH-value on the bioethanol yield, as a contour plot, image and response surface are 

presented by Fig. 4.2, 4.3 and 4.4 respectively. 
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i). Contour Plots 

 

 

Figure 4.2: The Contour Plots for Bioethanol Yield 

The response surface model was used to predict the ethanol yield by contour plots. A 

Contour plot is the projection of the response surface as a two dimensional plane  Box 
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and Hunter, (1957). The shapes of contour plots indicate the nature and extent of the 

interaction between different factors Prakash et al., (2017),where less prominent or 

negligible interactions were shown by the circular nature of the contour plots,  while 

comparatively prominent interactions were otherwise shown by the elliptical nature of 

the contour plots. The contour plots developed using the fitted quadratic polynomial 

equation obtained from regression analysis are in Figure 4.2(a-f). Each figure presents 

the effect of two variables on the production of bioethanol, while the other two 

variables are held at zero level Liu et al., (2013). Figure 4.2 (f) shows the effects of 

varying temperature X3 and substrate concentration X4 while fermentation time and 

pH are held constant at the stationary point. The enlarged contour Figure 4.2 (f) with 

colors is depicted in Appendix Figure C. 
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ii). Images of Yield 

 

 

Figure 4.3: Images of Bioethanol Yield 
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iii). Response Surface Plots 

 

 

Figure 4.4:  Response Surface Plots General Design 

  

( a)   Time

-2
-1

0
1

2

p
H

-2

-1

0

1

2

E
th

a
n

o
 Y

ie
ld

2

4

6

8

10

Slice at X3 = 0, X4 = 0

( b)   Time

-2
-1

0
1

2
T
e
m

p

-2

-1

0

1

2

E
th

a
n

o
 Y

ie
ld

0

5

10

Slice at X2 = 0, X4 = 0

( c)   Time

-2
-1

0
1

2

C
on

c

-2

-1

0

1

2

E
th

a
n

o
 Y

ie
ld

2

4

6

8

10

Slice at X2 = 0, X3 = 0

( d)   pH

-2
-1

0
1

2

T
e
m

p

-2

-1

0

1

2

E
th

a
n

o
 Y

ie
ld

0

5

10

Slice at X1 = 0, X4 = 0

( e)   pH

-2
-1

0
1

2

C
on

c

-2

-1

0

1

2

E
th

a
n

o
 Y

ie
ld

0

5

10

Slice at X1 = 0, X3 = 0

( f)   
Temp

-2
-1

0
1

2

C
on

c

-2

-1

0

1

2

E
th

a
n

o
 Y

ie
ld

0

5

10

Slice at X1 = 0, X2 = 0



71 
 

 
 

4.4.2 Analytical Determination of the Optimum Settings 

Characterization of the Response Surface was achieved by determining the stationary 

point of the response surface using computer software R programming. 

Table 4.9: The Stationary Point of Response Surface:  

 

          X1         X2           X3          X4 

0.7455032  -0.7762284   0.5897951  -0.3597595  

The conditions of the stationary point were determined analytically as follows  
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237226.021016.12/44478.02/86539.0

211679.1244478.062737.0275902.

221272.0286539.0275903.002997.1

  

 The derivative of �̂� with respect to vector 𝑋  equated to zero was obtained using 

equation (3.62) and therefore the stationary point is given as equation (3.63) 











































































10893.0

99367.0

26866.0

51267.0

138150.1186130.0558395.0106360.0

186130.021016.122239.0432695.0

558395.0222390.062737.0379515.0

106360.0432695.0379515.0029990.1

5.0

3597595.0

589751.0

7762284.0

745503.0
1

sX  

𝐵−1 = [

−1.5612644
1.2956016
−0.4056709
0.5560856

1.29560157
−4.02630437
0.00875697
−1.85572902

−0.4056709
0.0087569
−0.9894949
0.1282057

0.5560856
−1.8557290
0.1282058
−1.7580701

] 

 

And the predicted response at this stationary point is given by equation (3.64) as  
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10893.0

99367.0

26866.0

51267.0

3597595.0589751.0776228.0745503.05.082132.113901.12

   

Which gives a yield of 12.3901g/L of bioethanol. The stationary point gives the coded 

levels of the control variables i.e. 𝑋1 = 0.745503 is the coded level of incubation 

time at the stationary point. While −0.776228 , 0.589751 𝑎𝑛𝑑 − 0.3597595 are the 

coded levels of the initial pH, incubation temperature and the substrate concentration 

respectively. The natural levels of the factors were obtained as follows: 

For the incubation time, the natural level at the stationary point was 0.745503 =

𝜉𝑡−48
48
2.117×2⁄

→ 𝜉𝑡 = 56.45162 ≅ 56.5 hours of incubation and for the initial PH, the 

natural level was −0.776228 =
𝜉ℎ−5.5

3

2.117×2

→ 𝜉𝑝ℎ = 4.949995 ≅ 4.95 and similarly for 

incubation temperature, the natural level at the stationary point was 0.589751 =

𝜉𝑙−32.5
15

2.117×2

→ 𝜉𝑡𝑝 = 34.5903332.8
𝑜𝐶 ≅ 34.60𝐶 and finally the substrate concentration in 

natural variable was −0.3597595 =
𝜉𝑚−30
20

2.117×2

→ 𝜉𝑐 = 28.30062 ≅ 28.3g/L and with a 

production of 12.39g/L of alcohol, it is worthwhile to note that  
12.39g/L 

28.3g/L
 this is an 

yield of 0.4377996g of ethanol per gram of the substrate which compares well with 

most other findings in literature since it translates to 85.6% of the theoretical yield, 

where 0.511g of ethanol per gram of substrate is the theoretical yield as proposed by 

Tropea et al., (2014) at the stationary point. The response surface was characterized 

by expressing the fitted model in canonical form as equation (4.8)  

�̂� = Ŷ𝑠 + 𝜆1𝑤1
2 + 𝜆2𝑤2

2 + 𝜆3𝑤3
2 + 𝜆4𝑤4

2      (4.8) 
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Where 𝜆𝑖 for 𝑖 = 1,2,3,4. are simply the roots of  ∥ 𝛽 − 𝜆𝐼 ∥ equated to zero with  

𝜆 = [

−0.1795987
−0.7201155
−1.1548720
−1.9510952

]  being the vector of Eigen values. The canonical form of the 

fitted model is given in equation (4.9) 

 �̂� = 12.390 − 0.17959𝑤1
2 − 0.72012𝑤2

2 − 1.15487𝑤3
2 − 1.95109𝑤4

2     (4.9) 

Since all the Eigen values are negative the stationary point is a maximum point within 

the region of exploration. The relationship between the canonical variables {𝑤𝑖}  and 

the design variables {𝑥𝑖} was determined .This is necessary when it is difficulty to run 

the experiment at the stationary point. The process variables are related to canonical 

variables by  𝑊′ = 𝑀′(𝑋 − 𝑋𝑠) ; Where the columns of 𝑀 are the normalized Eigen 

vectors associated with 𝜆𝑖 ie if 𝑚𝑖  is the 𝑖𝑡ℎ  column of matrix  𝑀 , then 𝑚𝑖  is the 

solution to (𝛽 − 𝜆𝐼)𝑚𝑖 = 0  for which  ∑ 𝑚𝑖
2 = 1𝑘

𝑖=1 . 

 𝑀 = [

0.3342068 0.7031772 0.3793281 −0.4999579
−0.82565661 0.2194700 −0.2670610 −0.4458727
 0.04385817
−0.45240843

0.6513284
0.1820609

−0.5200101  0.5508515
0.7172016   0.4977975

] 

So the relationship between the 𝑊 and 𝑋 variables is  

[

𝑤1
𝑤2
𝑤3
𝑤4

] = [

0.3342068 0.7031772 0.3793281 −0.4999579
−0.82565661 0.2194700 −0.2670610 −0.4458727
 0.04385817
−0.45240843

0.6513284
0.1820609

−0.5200101  0.5508515
0.7172016 0.4977975

]

′

× [

𝑥1 − 0.7455032
𝑥2 + 0.7762284
𝑥3 − 0.589751
𝑥4 + 0.3597595

]

  

Implying that if 𝑤1 is required, the equation (4.10) is solved  

𝑤1 = 0.33(𝑥1 − 0.75) + 0.70(𝑥2 + 0.78) + 0.38(𝑥3 − 0.59) − 0.50(𝑥4 + 0.36)     (4.10) 

To explore the response surface in the vicinity of the stationary point, the appropriate 

points at which to take observations in the 𝑤𝑖
′𝑠 space are obtained as such and then 

equation (4.8) was used to obtain 𝑥𝑖
′𝑠 so that the runs may be made. As a confirmation 

test, one experiment of fermentation using the optimized conditions was conducted to 
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validate the model. Three samples of the diluted ferment were set up for oxidation 

experiment and an ethanol yield of 11.6 ± .15 g/L was obtained. This actual value 

closely agreed with the predicted value, with a difference of only 0.8%. Hence, it 

confirmed that the model developed from the response surface methodology reliably 

predicted ethanol production. According to Irshad and Asgher, (2011) differences 

between experimental and predicted values of less than 10% confirm the validity of a 

model. This actual value was in close agreement with the predicted value with 

difference of less than 10%. Hence, the model developed from the response surface 

methodology was confirmed and therefore the model reliably predicts ethanol yields. 

The “steepest” function in R which computes the curved path of the steepest ascent 

based on the ridge analysis was employed to further study ethanol yield at the point of 

maximum yield table 4.10 is the graph of steepest Ascent. 

Table 4.10: Path of Steepest Ascent: 

Run Dist. X1 X2 X3 X4       |    yhat 

1.  0.0 0.000 0.000 0.000 0.000  | 11.821 

2.  0.5 0.307 -0.176 0.350 -0.047  | 12.220 

3.  1.0 0.607 -0.540 0.534 -0.234  | 12.371 

4.  1.5 0.846 -0.966 0.623 -0.462  | 12.379 

5.  2.0 1.053 -1.395 0.680 -0.695  | 12.279 

6.  2.5 1.246 -1.821 0.722 -0.927  | 12.082 

7.  3.0 1.431 -2.244 0.758 -1.158  | 11.791 

8.  3.5 1.612 -2.665 0.791 -1.388  | 11.407 

9.  4.0 1.788 -3.082 0.820 -1.616  | 10.935 

10.  4.5 1.964 -3.503 0.848 -1.846  | 10.366 

11.  5.0 2.138 -3.919 0.875 -2.074  | 9.711 

 

After the midpoint range the bioethanol yield decreased despite the fact that all 

variables were increasing. This was due to growth-inhabiting effect of high sugar 

concentrations, high pH levels, high temperature, as well as ethanol-formation which 

with time raised its levels thereby distorting microorganisms (yeast) causing what is 

referred to as “metabolism-poisonous effect”, Thatipamala et al., (1992). The point of 

maximum ethanol yield from ridge analysis lies between the fourth and fifth points 
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which depicts the greatest yield of 12.379 g/L at the fourth point from table (4.10) 

followed by a decrease at the fifth point to12.279g /L. The variables setting in coded 

form at the fourth point are 0.846, -0.966, 0.623 and -0.462 for the time, initial PH, 

incubation temperature and Substrate concentration, from the design center 

respectively which corresponds to 57.6hours,pH of 4.8,34.70C and a concentration of 

27.82g/L of the substrate in natural levels .The path of steepest ascent is shown in 

Figure 4.5. 

 
Figure 4.5: Path of Steepest Ascent Plot 
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4.4.3. Optimization using the 𝑬 −Optimal Design 

The most efficient design was the 𝐸 −optimal with a relative efficiency the general to 

the 𝐸 − optimal design being equal to 1%. 𝐸 − 𝑜ptimal design required only 32 runs 

i.e only factorial part of the design was necessary but this design was found to be 

inadequate in estimating parameters of the full second order model since some 

coefficients were aliased and it was not possible to use function ‘rsm’ instead it 

returned a linear model. But augmenting the design with one center point enabled 

fitting of the full second order model without factors aliasing. Table 4.11 is the 

regression analysis for the full second order model using the E-optimal design 

Table 4.11: Regression Analysis for the 𝑬 −Optimal Design 

Estimate Std. Error t value Pr(>|t|)     

(Intercept) 11.82100    0.64028 18.4623 3.815e-13 *** 

X1           0.42876     0.11495 3.7300 0.0015326 ** 

X2          -0.27118     0.11495 -2.3592 0.0298177 *   

X3           1.05541     0.11495 9.1816 3.268e-08 *** 

X4           0.10627     0.11495 0.9245 0.3674353     

X1:X2       -0.75903    0.12382 -6.1302 8.642e-06 *** 

X1:X3        0.86539     0.12382 6.9892 1.586e-06 *** 

X1:X4        0.21272     0.12382 1.7180 0.1029487     

X2:X3        0.44478     0.12382 3.5922 0.0020830 ** 

X2:X4        1.11679    0.12382 9.0195 264e-08 *** 

X3:X4       -0.37226     0.12382 -3.0065 0.0075773 ** 

X1^2        -1.29141    0.22606 -5.7127 2.041e-05 *** 

X2^2        -0.58556    0.22606 -2.5903 0.0184723 *   

X3^2        -1.10770     0.22606 -4.9000 0.0001153 *** 

X4^2        -1.02068    0.22606 -4.5151 0.0002680 *** 

 
---Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1,Multiple R-squared:   0.95,     

Adjusted R-squared:  0.911 , F-statistic: 24.41 on 14 and 18 DF,  p-value: 7.464e-09 

Stationary point of response surface: The 𝐹 −value of 24.41 with a 𝑃 −value of 

7.464e-09 which is almost negligible indicates that the model is very significant. 

From the Table 4.11, the intercept term and incubation temperatures, the interactive 

effects of initial pH and incubation time, time and temperature, pH and concentration 

as well as the quadratic effects of time, temperature and concentration were all very 
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significant at P-values 0.001 While the incubation time and the interactions effects of 

pH and time as well as time and concentration were significant at P-values of 0.01 

and with a multiple R-squared of 0.95,only 0.05 variations of 𝑌 around the mean �̅� is 

not explained by the model hence as expected the model by the 𝐸 −optimal design 

achieves better parameters estimations with the least number of runs. The final model 

for the E-optimal design was  

�̂� = 11.82 + 0.43𝑋1 − 0.27𝑋2 + 1.05𝑋3 + 0.11𝑋4 − 0.76𝑋12 + 0.87𝑋13 +

0.44𝑋23 + 1.12𝑋24 − 0.37𝑋34 − 1.29𝑋11 − 0.59𝑋22 − 1.11𝑋33 − 1.02𝑋44     (4.11). 

Table 4.12: Analysis of Variance Table 

 

Response: Y1:   D.f  Sum Sq  Mean Sq  F value     Pr(>F) 

FO(X1, X2, X3, X4)    4  42.896  10.7240   26.159  2.744e-07 

TWI(X1, X2, X3, X4)   6  78.988  13.1646   32.112  1.137e-08 

PQ(X1, X2, X3, X4)   4  18.217   4.5543   11.109  0.0001019 

Residuals            18 7.379    0.4100                   

Lack of fit          18 7.379    0.4100                   

Pure error            0   0.000                           

The first order terms, the two-way interaction terms and the quadratic terms of the 

model were all significant at 𝛼 = 5% with the 𝑃 −values of their 𝐹 −ratios being less 

the0.05. Stationary point of response surface in coded levels of the variables were 

X1= 0.5600981, X2= -0.7591368, X3= 0.6127829 and X4= -0.4166317.The 

corresponding levels in actual variables were 𝑋1 = 54.35  hours of incubation 

time, 𝑋2 = 4.96  initial pH, 𝑋3 = 34.67  hrs. and 𝑋4 = 28.03𝑔/𝐿 substrate 

concentration for an yield of 12.35g /L of ethanol which is slightly less than  the 

estimated maximum value by the general design by 0.04𝑔/𝐿.But the yield achieved 

by the E-optimal design was slightly higher  at 86.22% of the theoretical yield as 
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compared to 85.6% of the general design by 1.00724%. Hence this design would be 

preferred to general design since it achieves higher percentages of ethanol yield at a 

lower number of experimental runs.  

Eigen analysis: From the R out- put, the Eigen values were  

 [-0.1440843,  -0.7681515,  -1.1212032,  -1.9719169] all of them negative hence 

once more a point of maximum yield is suggested and confirmed by the ridge analysis 

for the steepest ascent. The R-output for the ridge analysis for the 𝐸 −optimal design 

is given in Table 4.13 

Table 4.13: Ridge Analysis E-Optimal 

 Distance     X1   X2   X3     X4 |   yhat 

1.    0.0 0.000 0.000 0.000 0.000 | 11.821 

2.  0.5 0.253 -0.172 0.391 -0.060 | 12.215 

3.  1.0 0.488 -0.576 0.580 -0.305 | 12.337 

4.  1.5 0.656 -1.032 0.645 -0.583 | 12.328 

5.  2.0 0.798   -1.476 0.677 -0.852 | 12.232 

6.  2.5 0.930 -1.911 0.697 -1.117 | 12.058 

7.  3.0 1.058 -2.342 0.712 -1.378 | 11.808 

8.  3.5 1.181 -2.767 0.724 -1.635 | 11.486 

9.  4.0 1.303 -3.191 0.734 -1.892 | 11.090 

10.  4.5 1.423 -3.612 0.743 -2.147 | 10.623 

11.  5.0  1.545 -4.038 0.752 -2.405 | 10.075 

 

The optimal bioethanol yield was at the third point of 12.337g/L. 
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i). Images for the E-Optimal Design 

 

 

Figure 4.6: Images of Yield for E-Optimal Design 
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ii). The Contour Plots E-Optimal 

 

 

Figure 4. 7: Contour Plots from the E-Optimal 
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In the contour plots of figure 4.7, when variables other than those on the coordinate 

axes are involved, the display is a slice of the response surface, holding the other 

variables fixed at certain values. By default, the averages of the numeric predictors 

and their first levels are used.  The contour plots in figure 4.7(a) show a slice of the 

response surface when substrate concentration (X4) and incubation time (X1) are held 

constant at -0.42 and 0.56 the interest is in the behavior of the response in the 

neighborhood of the stationary point. 
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iii). Surface Plots E-Optimal 

 

  

 

  

 

Figure 4.8: Response Surface Plot E-Optimal Design 
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center. For example, in figure 4.8(a), yield increases with increase in both incubation 

time and initial pH up to a point where incubation time is -0.76 and pH is 0.56 while 

incubation temperature and substrate concentrations are equal to zero for a yield of 

11.55g/L. Further increase in both time and pH results in decreased yield for example 

when time is increased to -0.90 from -0.76 and pH coded level decreases to 1 from 

0.56 while temperature and concentration are still zero in coded levels, the yield 

decreases to 11.45597g/L.  
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.0 Introduction  

This chapter gives summary, conclusion and recommendations of the findings of this 

research and also suggests areas for further research which have emerged during the 

course of this study. 

5.1 Conclusion 

The 𝐷−,𝐴−, 𝐸 − 𝑎𝑛𝑑 𝑇 −optimal values of the general design were obtained as well 

as the relative efficiencies of the general second order design to the optimal designs. 

The 𝐸 − optimal was a design of 32 runs and it was the most the efficient design over 

the general design with a relative efficiency of one Wald, (1943). An application to a 

four factor experiment was fit to the design to determine the optimal conditions for 

ethanol yield where incubation time, initial pH, incubation temperature and substrate 

concentrations, were the variables under investigation. The ethanol yield increased 

with increase in the process variables up to a certain point before ethanol produced 

started decreasing as indicated by the plot of the path of steepest ascent and the 

response surface plots. This was due to “metabolic poison effect” and an optimal yield 

of  12.35g/L of ethanol was realized at factor settings of 0.5600981,-

0.7591368,0.6127829,-0.4166317 for time, pH, temperature and substrate 

concentration respectively in coded levels translating to 54.35hours, 4.96 level of pH, 

34.670C temperature and 28.03g/L of substrate concentration of factors in natural 

levels for the 𝐸 − optimal design while the an optimal yield of 12.390g/l of ethanol 

was realized using the general design at factor settings in coded and natural levels as 

0.75,-0.78,0.59,-0.36 and 56.45hours, 4.95 pH level, 34.590C level of temperature and 

28.30g/l of substrate concentrations respectively. The yield by the E-optimal design 
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was noted to be slightly lower than the yield obtained using the general design by 

0.04488981g/L. Response surface methodology and the rotatable design constructed 

using balanced incomplete block design for four factors with 𝑟 < 3𝜆  was found 

reliable in modeling, optimizing and studying the effects of the factors and their 

interaction to the process of fermentation of pineapples peels waste as substrate for 

ethanol production using Saccharomyces cerevisiae. The high values of coefficient of 

determination 𝑅2 of 0.95 and adjusted R-squared of 0.911 for the E-optimal design 

indicated that the model fitted the data well. The yields of 12.35g/L of ethanol for a 

substrate concentration of 28.03g/L translates into 0.441g of ethanol per gram of 

substrate which compares well with many other findings in literature from similar 

studies. This was roughly 86% of the theoretical yield. Theoretical yield  in this study 

was calculated as the maximum ethanol yield in relation to dry matter, ( 0.511 g alcohol per 

1.0 g dry matter of substrate as proposed by  Tropea et al., (2014).The design was found 

reliable in modeling, optimizing and studying effects of the factors to the processes of 

fermentation of pineapples peels for ethanol production. The study established the 

factor settings that yield maximum ethanol from pineapple peels. These wastes if not 

properly disposed can be a major source of pollution. A cheaper fuel than fossil fuel is 

provided while managing wastes. 

5.2 Recommendations  

The design can be applied to any four factor experiment provided the appropriate 

coded values and actual value transformations are made. Further investigation of the 

𝐸 −optimal design is recommended to determine the number of center points that will 

give it the optimal value of ethanol yield during fermentation of pineapple peels. A 

comparison of the results obtained using this design and the result of rotatable design 

with four factors constructed using balanced incomplete block design when 
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replications (r) are more than three the number of times (𝜆) pairs of treatments occur 

together applied in fermentation of pineapple peels is also suggested. Investigation of 

optimal settings of incubation time and temperature as well as initial pH levels at 

constant substrate concentrations is also recommended since the full second order 

model fitted indicated that the concentrations of pineapple peels were not significant 

at all as a main factor as well as quadratic term and the corresponding optimal yield of 

bioethanol at these optimal settings should be investigated. Further suggestion is made 

on increasing ethanol yield using pineapple peels by employing enzymatic hydrolysis 

to increase percentages of fermentable sugars after pre-treatment as well as 

determination of the amount of ethanol yielded from fermentation samples through 

distillation, since this would increase the precision with which ethanol is determined. 
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APPENDICES 

Appendix I: R-Code for Selected Runs 

a= 1.137241371 

a1= -a 

b=2.116644693 

b1= -b 

r0=c (rep(1,40)) 

r1=c(rep(c(a1,a),12),rep(0,8),b,b1,rep(0,6)) 

r2=c(rep(0,8),rep(c(a1,a1,a,a),4),rep(c(a1,a),4),0,0,b,b1,rep(0,4)) 

r3=c(rep(c(a1,a1,a,a),2),rep(0,8),c(a1,a1,a1,a1,a,a,a,a),rep(c(a1,a1,a,a),2),rep(0,4),b,b

1,0,0) 

r4=c(rep(c(a1,a1,a1,a1,a,a,a,a),2),rep(0,8),c(a1,a1,a1,a1,a,a,a,a),rep(0,6),b,b1) 

Y=cbind(r0,r1,r2,r3,r4) 

X=matrix(c(r0,r1,r2,r3,r4,r1*r1,r1*r2,r1*r3,r1*r4,r2*r2,r2*r3,r2*r4,r3*r3,r3*r4,r4*r4

),nrow=40) 

MG=round((1/40)*(t(X)%*%X),4) 

Dcri=(det(MG))^(1/15) 

Acri=(sum(diag(solve(MG)))/15)^-1 

Ecri=min(eigen(MG)$value) 

Tcri=(sum(diag(MG)))/15 

U1=X%*%t(X)#U1 is singular therefore 

library(MASS) 

U=(ginv(U1))%*%X 

Bd=round(U%*%MG%*%t(U),7)# B opt matrix for D-opt Matrix 

qd=(Bd[1,1])^.5 #bii for D-opt factorial  

qqd=(Bd[40,40])^.5 # bii for D-opt for axial part 

dwd=(sum((diag(Bd))^.5))# denominator of Bd for D-optimal weights 

Dopwf=qd/dwd #D-opt weight corresponding to factorial part 

DopwA=qqd/dwd #D-opt weight for axial part 
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Ba=round(U%*%t(U),7) 

Bt=round(U%*%MG^2%*%t(U),7) 

dr=sum((r1^2)^2) 

qt=(Bt[1,1])^.5 #numerator for factorial part T-opt 

qqt=(Bt[40,40])^.5 #numerator for axial part T-opt 

dwt=(sum((diag(Bt))^.5))#denominator of Bt for T-optimal weights 

Topwf=qt/dwt #for factorial part T-optimal weight 

TopwA=qqt/dwt #for axial part T-optimal weight 

dwa=(sum((diag(Ba))^.5))# denominator Ba for A-optimal weights 

qa=(Ba[1,1])^.5 #bii for factorial 

qqa=(Ba[40,40])^.5 #bii for axial 

Aopwf=qa/dwa #A-optimal weight for factorial 

AopwA=qqa/dwa #A-optimal weight for axial part 

The D-optimal design 

a1=-1.137241371 

a=-a1 

b=2.116644693 

b1=-b 

ra=c(rep(1,32)) 

r0=c(rep(ra,2),rep(1,24)) 

r1=c(rep(c(rep(c(a1,a),12),rep(0,8)),2),rep(c(b,b1,rep(0,6)),3)) 

r2=c(rep(c(rep(0,8),rep(c(a1,a1,a,a),4),rep(c(a1,a),4)),2),rep(c(0,0,b,b1,rep(0,4)),3)) 

r3=c(rep(c(rep(c(a1,a1,a,a),2),rep(0,8),c(a1,a1,a1,a1,a,a,a,a),rep(c(a1,a1,a,a),2)),2),rep

(c(rep(0,4),b,b1,0,0),3)) 

r4=c(rep(c(rep(c(a1,a1,a1,a1,a,a,a,a),2),rep(0,8),c(a1,a1,a1,a1,a,a,a,a)),2),rep(c(rep(0,

6),b,b1),3)) 

X=matrix(c(r0,r1,r2,r3,r4,r1*r1,r1*r2,r1*r3,r1*r4,r2*r2,r2*r3,r2*r4,r3*r3,r3*r4,r4*r4

),nrow=88) 

MG=round((1/88)*(t(X)%*%X),4) 

Doptcri=(det(MG))^(1/15) 
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Doptcri 

The A=optimal run 

a1=-1.137241371 

a=-a1 

b=2.116644693 

b1=-b 

ra=c(rep(1,32)) 

r0=c(rep(ra,2),rep(1,48)) 

r1=c(rep(c(rep(c(a1,a),12),rep(0,8)),2),rep(c(b,b1,rep(0,6)),6)) 

r2=c(rep(c(rep(0,8),rep(c(a1,a1,a,a),4),rep(c(a1,a),4)),2),rep(c(0,0,b,b1,rep(0,4)),6)) 

r3=c(rep(c(rep(c(a1,a1,a,a),2),rep(0,8),c(a1,a1,a1,a1,a,a,a,a),rep(c(a1,a1,a,a),2)),2),rep

(c(rep(0,4),b,b1,0,0),6)) 

r4=c(rep(c(rep(c(a1,a1,a1,a1,a,a,a,a),2),rep(0,8),c(a1,a1,a1,a1,a,a,a,a)),2),rep(c(rep(0,

6),b,b1),6)) 

X=matrix(c(r0,r1,r2,r3,r4,r1*r1,r1*r2,r1*r3,r1*r4,r2*r2,r2*r3,r2*r4,r3*r3,r3*r4,r4*r4

),nrow=112) 

MG=round((1/112)*(t(X)%*%X),4) 

Aoptcri=((1/15)*(sum(diag(solve(MG)))))^-1 

Aoptcri 

The T-Optimal run 

a1=-1.137241371 

a=-a1 

b=2.116644693 

b1=-b 

r0=c(rep(1,112)) 

r1=c(rep(c(rep(c(a1,a),12),rep(0,8)),2),rep(c(b,b1,rep(0,6)),6)) 

r2=c(rep(c(rep(0,8),rep(c(a1,a1,a,a),4),rep(c(a1,a),4)),2),rep(c(0,0,b,b1,rep(0,4)),6)) 

r3=c(rep(c(rep(c(a1,a1,a,a),2),rep(0,8),c(a1,a1,a1,a1,a,a,a,a),rep(c(a1,a1,a,a),2)),2),rep

(c(rep(0,4),b,b1,0,0),6)) 



95 
 

 
 

r4=c(rep(c(rep(c(a1,a1,a1,a1,a,a,a,a),2),rep(0,8),c(a1,a1,a1,a1,a,a,a,a)),2),rep(c(rep(0,

6),b,b1),6)) 

X=matrix(c(r0,r1,r2,r3,r4,r1*r1,r1*r2,r1*r3,r1*r4,r2*r2,r2*r3,r2*r4,r3*r3,r3*r4,r4*r4

),nrow=112) 

MG=round((1/112)*(t(X)%*%X),4) 

Toptcri=((1/15)*(sum(diag(MG)))) 

THE E-OPTIMAL run 

a1=-1.137241371 

b=2.116644693 

r0=c(rep(1,32)) 

r1=c(rep(c(a1,a),12),rep(0,8)) 

r2=c(rep(0,8),rep(c(a1,a1,a,a),4),rep(c(a1,a),4)) 

r3=c(rep(c(a1,a1,a,a),2),rep(0,8),c(a1,a1,a1,a1,a,a,a,a),rep(c(a1,a1,a,a),2)) 

r4=c(rep(c(a1,a1,a1,a1,a,a,a,a),2),rep(0,8),c(a1,a1,a1,a1,a,a,a,a)) 

Y=cbind(r0,r1,r2,r3,r4) 

X=matrix(c(r0,r1,r2,r3,r4,r1*r1,r1*r2,r1*r3,r1*r4,r2*r2,r2*r3,r2*r4,r3*r3,r3*r4,r4*r4

),nrow=32) 

MG=round((1/32)*(t(X)%*%X),4) 

Z=eigen(MG)$vectors 

z=Z[1:15,15] 

Z1=round(eigen(MG)$values,5) 

#Vo=((1/40)*(sum((diag(B))^.5)^2))^-1 

d=read.csv("D:\\timf.csv",header=T) 

library(rsm) 

ft=rsm(formula=Y~SO(X1,X2,X3,X4),data=d) 

summary(ft) 

sa1=steepest(ft) 

library(MASS) 

d.lm=lm(Y~X1+X2+X3+X4,data=d) 

par(mfrow=c(3,2)) 
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plot(d1,pch=20,xlab="(a) Index",ylab="residuals",main="Scatter Plot Of The Errors") 

d.stdres=rstandard(d.lm) 

qqnorm(d.stdres, 

ylab="standardized residuals", 

xlab="(b) Normal scores", 

main="Normal Q-Q Plot Ethanol Yield") 

qqline(d.stdres) 

plot(d.stdres~Run,ylab="standardised residuals",xlab="(c) 

RunNumber",pch=20,data=d) 

plot(d.stdres~Yh,ylab="standardised residuals",xlab="(d) Predicted",pch=20,data=d) 

plot(d.stdres~Y,ylab="standardised residuals",xlab="(e) Actual 

Yield",pch=20,data=d) 

plot(Yh~Y,ylab="Predicted",xlab="(f) Actual Yield",pch=20,data=d) 

d=read.csv("D:\\timf.csv",header=T)# design matrix and experimental values 

library(rsm) 

ft=rsm(formula=Y~SO(X1,X2,X3,X4),data=d)#fit full second order model 

summary(ft)#anova output 

sa1=steepest(ft)# path of steepest acsent 

d=read.csv("D:\\timf.csv",header=T) 

d1=d[1:32,]# E-optimal design  matrix 

d2=c(33,0,0,0,0,11.821)# argumenting with one centre point 

d3=rbind(d1,d2) 

library(rsm) 

ft=rsm(formula=Y~SO(X1,X2,X3,X4),data=d3) 

summary(ft) 

sa1=steepest(ft)# pathof steepest ascent 

ept1=dupe(sa1[2:9,]) 

we.lm=rsm(Y~SO(X1,X2,X3,X4),data=d) 

par(mfrow=c(2,3)) 
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image(we.lm,~X1+X2+X3+X4) 

xs=canonical(we.lm)$xs# stationary point of full model 

myhook=list() 

myhook$post.plot=function(lab){idx=sapply(lab[3:4],grep,names(xs)) 

points(xs[idx[1]],xs[idx[2]],pch=2,col="red")} 

par(mfrow=c(2,3)) 

contour(we.lm,~X1+X2+X3+X4,image=TRUE,# Contour plots 

at=xs,hook=myhook) 
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Table A: The Design Matrix 𝑿 for the Full Second Order Model 
X0    X1    X2    X3    X4 X1 X2  X1 X3  X1 X4  X2 X3 X2 X4  X3 X4   X1

2  X2
2   X3

2   X4
2 

1 -1.137 0 -1.137 -1.137 0 1.2928 1.2928 0 0 1.2928 1.2928 0 1.2928 1.2928 

1 1.137 0 -1.137 -1.137 0 -1.2928 -1.2928 0 0 1.2928 1.2928 0 1.2928 1.2928 

1 -1.137 0 1.137 -1.137 0 -1.2928 1.2928 0 0 -1.2928 1.2928 0 1.2928 1.2928 

1 1.137 0 1.137 -1.137 0 1.2928 -1.2928 0 0 -1.2928 1.2928 0 1.2928 1.2928 

1 -1.137 0 -1.137 1.137 0 1.2928 -1.2928 0 0 -1.2928 1.2928 0 1.2928 1.2928 
1 1.137 0 -1.137 1.137 0 -1.2928 1.2928 0 0 -1.2928 1.2928 0 1.2928 1.2928 

1 -1.137 0 1.137 1.137 0 -1.2928 -1.2928 0 0 1.2928 1.2928 0 1.2928 1.2928 

1 1.137 0 1.137 1.137 0 1.2928 1.2928 0 0 1.2928 1.2928 0 1.2928 1.2928 

1 -1.137 -1.137 0 -1.137 1.2928 0 1.2928 0 1.2928 0 1.2928 1.2928 0 1.2928 
1 1.137 -1.137 0 -1.137 -1.2928 0 -1.2928 0 1.2928 0 1.2928 1.2928 0 1.2928 

1 -1.137 1.137 0 -1.137 -1.2928 0 1.2928 0 -1.2928 0 1.2928 1.2928 0 1.2928 

1 1.137 1.137 0 -1.137 1.2928 0 -1.2928 0 -1.2928 0 1.2928 1.2928 0 1.2928 

1 -1.137 -1.137 0 1.137 1.2928 0 -1.2928 0 -1.2928 0 1.2928 1.2928 0 1.2928 
1 1.137 -1.137 0 1.137 -1.2928 0 1.2928 0 -1.2928 0 1.2928 1.2928 0 1.2928 

1 -1.137 1.137 0 1.137 -1.2928 0 -1.2928 0 1.2928 0 1.2928 1.2928 0 1.2928 

1 1.137 1.137 0 1.137 1.2928 0 1.2928 0 1.2928 0 1.2928 1.2928 0 1.2928 

1 -1.137 -1.137 -1.137 0 1.2928 1.2928 0 1.2928 0 0 1.2928 1.2928 1.2928 0 
1 1.137 -1.137 -1.137 0 -1.2928 -1.2928 0 1.2928 0 0 1.2928 1.2928 1.2928 0 

1 -1.137 1.137 -1.137 0 -1.2928 1.2928 0 -1.2928 0 0 1.2928 1.2928 1.2928 0 

1 1.137 1.137 -1.137 0 1.2928 -1.2928 0 -1.2928 0 0 1.2928 1.2928 1.2928 0 

1 -1.137 -1.137 1.137 0 1.2928 -1.2928 0 -1.2928 0 0 1.2928 1.2928 1.2928 0 
1 1.137 -1.137 1.137 0 -1.2928 1.2928 0 -1.2928 0 0 1.2928 1.2928 1.2928 0 

1 -1.137 1.137 1.137 0 -1.2928 -1.2928 0 1.2928 0 0 1.2928 1.2928 1.2928 0 

1 1.137 1.137 1.137 0 1.2928 1.2928 0 1.2928 0 0 1.2928 1.2928 1.2928 0 
1 0 -1.137 -1.137 -1.137 0 0 0 1.2928 1.2928 1.2928 0 1.2928 1.2928 1.2928 

1 0 1.137 -1.137 -1.137 0 0 0 -1.2928 -1.2928 1.2928 0 1.2928 1.2928 1.2928 

1 0 -1.137 1.137 -1.137 0 0 0 -1.2928 1.2928 -1.2928 0 1.2928 1.2928 1.2928 

1 0 1.137 1.137 -1.137 0 0 0 1.2928 -1.2928 -1.2928 0 1.2928 1.2928 1.2928 
1 0 -1.137 -1.137 1.137 0 0 0 1.2928 -1.2928 -1.2928 0 1.2928 1.2928 1.2928 

1 0 1.137 -1.137 1.137 0 0 0 -1.2928 1.2928 -1.2928 0 1.2928 1.2928 1.2928 

1 0 -1.137 1.137 1.137 0 0 0 -1.2928 -1.2928 1.2928 0 1.2928 1.2928 1.2928 

1 0 1.137 1.137 1.137 0 0 0 1.2928 1.2928 1.2928 0 1.2928 1.2928 1.2928 

1 2.116 0 0 0 0 0 0 0 0 0 4.4775 0 0 0 

1 -2.116 0 0 0 0 0 0 0 0 0 4.4775 0 0 0 

1 0 2.116 0 0 0 0 0 0 0 0 0 4.4775 0 0 

1 0 -2.116 0 0 0 0 0 0 0 0 0 4.4775 0 0 
1 0 0 2.116 0 0 0 0 0 0 0 0 0 4.4775 0 

1 0 0 -2.116 0 0 0 0 0 0 0 0 0 4.4775 0 

1 0 0 0 2.116 0 0 0 0 0 0 0 0 0 4.4775 

1 0 0 0 -2.116 0 0 0 0 0 0 0 0 0 4.4775 
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TABLE B: THE MATRIX 𝑿′𝑿 

 























































21.8000.075.2600.000.075.2600.000.000.075.2600.000.000.000.099.39

00.075.2600.000.000.000.000.000.000.000.000.000.000.000.000.0

75.2600.021.8000.000.075.2600.000.000.075.2600.000.000.000.099.39

00.000.000.075.2600.000.000.000.000.000.000.000.000.000.000.0

00.000.000.000.075.2600.000.000.000.000.000.000.000.000.000.0

75.2600.075.2600.000.021.8000.000.000.075.2600.000.000.000.099.39

00.000.000.000.000.000.075.2600.000.000.000.000.000.000.000.0

00.000.000.000.000.000.000.075.2600.000.000.000.000.000.000.0

00.000.000.000.000.000.000.000.075.2600.000.000.000.000.000.0

75.2600.075.2600.000.075.2600.000.000.021.8000.000.000.000.099.39

00.000.000.000.000.000.000.000.000.000..099.3900.000.000.000.0

00.000.000.000.000.000.000.000.000.000.000.099.3900.000.000.0

00.000.000.000.000.000.000.000.000.000.000.000.099.3900.000.0

00.000.000.000.000.000.000.000.000.000.000.000.000.099.3900.0

99.3900,099.3900.000.099.3900.000.000.099.3900.000.000.000.000.40
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Table C: The Matrix 𝑿′𝑿 Inverse 

 

































































450.0000.0432.0000.0000.0432.0000.0000.0000.0432.0000.0000.0000.0000.0745.1

000.0432.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

432.0000.0450.0000.0000.0432.0000.0000.0000.0432.0000.0000.0000.0000.0745.1

000.0000.0000.0432.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0432,0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0

432.0000.0432.0000.0000.0450.0000.0000.0000.0432.0000.0000.0000.0000.0745.1

000.0000.0000.0000.0000.0000.0432.0000.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0432.0000.0000.0000.0000.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0432.0000.0000.0000.0000.0000.0000.0

432.0000.0432.0000.0000..0432.0000.0000.0000.0450.0000.0000.0000.0000.0745.1

000.0000.0000.0000.0000.0000.0000.0000.0000.0000..0025.0000.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0025.0000.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0025.0000.0000.0

000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0000.0025.0000.0

745.1000,0745.1000.0000.075.1000.0000.0000.0745.1000.0000.0000.0000.0001.7
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Table D: Monosaccharide Compositions of Pineapple Waste Cell 

Walls.(Tropea et al., 2014) 
 

                  Residue total    Rhamnose      Fucose   Arabinose   Xylose       Mannose   Galactose     Glucose    Galacturonic          

acid 

 

Test Hours (%) M SD M SD M SD M SD M SD M SD M SD M SD M SD 

0 3.9 657.1 30.6 3.0 0.3 2.5 0.2 57.0 2.1 224.8 9.8 22.3 1.1 34.8 4.2 251.7 25.1 60.9 3.7 

DF 12 3.7 642.5 29.8 2.8 0.2 1.5 0.2 59.8 0.2 214.7 14.9 24.1 1.7 35.8 1.6 239.3 16.6 64.5 1.5 

48 1.7 528.6 17.8 2.7 0.3 0.9 0.1 31.4 4.2 242.3 15.8 21.7 3.0 18.2 2.7 173.2 10.6 38.1 4.9 

0 3.2 660.1 53.5 1.5 0.1 1.1 0.1 62.6 2.7 246.4 16.0 16.5 2.0 36.0 3.1 235.4 20.2 60.4 8.9 

SHF 12 1.4 581.1 8.9 0.8 0.1 0.4 0.0 61.9 2.2 244.9 2.6 6.6 0.4 38.7 1.7 116.6 8.1 111.2 10.2 

30 0.7 565.6 4.4 1.5 0.1 1.0 0.1 54.6 3.3 236.0 15.9 14.5 0.5 36.7 2.7 123.0 3.4 98.4 4.7 

0 3.4 640.4 29.8 1.6 0.2 1.5 0.1 59.8 0.2 198.5 14.9 24.1 1.7 38.4 1.6 239.3 16.5 77.3 1.5 

SSF 12 1.2 432.4 37.3 1.2 0.2 0.6 0.1 35.0 4.2 174.9 33.6 28.7 1.9 21.5 2.5 133.7 13.3 36.7 5.8 

30 0.8 375.4 12.3 1.2 0.1 0.7 0.1 32.4 2.3 97.3 6.3 29.7 2.5 22.6 1.9 85.2 1.6 106.3 12.5 

 

Fiber Compositions; at Time 0, After 12 Hours and at The end of the process, 

for Direct Fermentation (DF), Separate  Hydrolysis and Fermentation (SHF) 

and Simultaneous Saccharification and Fermentation (SSF) expressed as 

µg/mg anhydrous sugars in original sample. Results are shown as mean value 

(m) and standard deviation (SD); residue (%) = proportion of biomass 

recovered as alcohol insoluble residue (air).  
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Table E:Dry Matter (% Fwt), Fiber and Soluble Sugars (% Dry 

Matter).(Tropea et al., 2014) 
 

 % of dry matter %  fibre in dry 

matter 

% soluble 

sugars 

Ethanol % (v/v) 

Amount 

     pH 

 initial final initial final initial final EY TY initial final 

DF 9.2 3.1 27.8 5.4 57.8 4.7 34 ± 0.2 86 4.5 3.4 

SHF 8.5 2.6 25 5.3 48.6 6.2 3.7 ± 0.1 89 5 3.3 

SSF 9 2.7 23.9 3.4 42.2 7.5 3.9 ± 0.1 96 4.5 3.3 

 

Ethanol Yield (EY), Theoretical Yield (TY) and PH for Direct Fermentation 

(DF), Separate Hydrolysis and Fermentation (SHF) and Simultaneous 

Saccharification and Fermentation (SSF). 
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Figure A: Fresh Pineapple Peels Left: Right Sun Dried Peels after three 

Days At 𝟐𝟓𝟎𝑪 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B: Left; Milled Peels after Oven Drying: Right Dissolved and Pre-

Treated Peels. 
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Figure C: Ccontours Plot Figure 4.2f Expanded 
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