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ABSTRACT

Response surface methodology is a set of techniques that includes setting up a series
of experiments that yields adequate and reliable measurements of the response of
interest, determine a model that best fits the data collected from the experimental
design chosen and determine the optimal settings of the experimental factors that
produce the maximum (or minimum) value of response. The aim of the study was to
investigate D- and A- optimal slope designs in the second degree Kronecker model
for mixture experiments with assumptions that the errors are independent and with
constant variance. The objectives of study were to obtain: equivalence relation that
serve as the necessary and sufficient condition for the existence of optimal slope
designs; optimal slope designs for the D- and A-optimality criteria and numerical
optimal weighted centroid designs and to demonstrate the practical use of generated
design in analysis of data obtained from a designed experiment on fruit blending. The
equivalence relation was proved using matrix algebra. Support points, elementary
centroid designs, coefficient, moment, information and slope matrices, were used to
derive optimal designs. D- and A-optimal designs were employed to generate
numerical optimal designs. The data collected from the designed experiment were
analyzed using SAS (Version 8) software. As a result, the study was able to obtain
generalized optimal slope design for a mixture experiment with at least two
ingredients. The Kronecker models fitted to the data from the experiment on fruit
blending explained the variation adequately well with coefficients of determination
98.2, 96.3 and 96.67 percent for the blend of two, three and four ingredients
respectively. Kronecker model with the weighted centroid design is very economical
considering the few support points that are necessary for a particular number of
ingredients experiment. In conclusion, the findings of this study strongly supports the
use of the form of the Kronecker model discussed to analyze the response surfaces
for mixture experiments. The study therefore highly recommends use of these models
to describe juice qualities that depend on variations in mixture amounts.
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CHAPTER ONE
1.0 Introduction
This study deals with the exploration and optimization of response surface. This is a
problem faced by experimenters in many technical fields, where in general the response
of interest is affected by a set of predictor variables. Experiments are performed by
investigators in virtually all fields of inquiry, usually to discover something about a

particular process or system.

An experiment is a test or a series of tests in which purposeful changes are made to the
input variables of a process so that we may observe and identify the reasons for changes
that may be observed in the output response. The objectives of the experiment may

include determining:

i.  Which variables are most influential on the response
ii.  Where to set the independent variables so that the response is almost near the
desired nominal value
iii.  Where to set the influential factors so that variability in response is small
iv.  Where to set the controllable factors so that the effects of uncontrollable factors

are minimized.

1.1 Response Surface Methodology

Response Surface Methodology (RSM) is a collection of mathematical and statistical
techniques that are useful for modeling and analyzing a problem in which a response of
interest is influenced by several variables with the objective of optimizing this response,
Montgomery (2001). The optimum value may be a maximum or minimum value
depending on the problem at hand. In most RSM problems, the form of the relationship

between the response and the independent variables is unknown. Thus the first step is



to find a suitable approximation for the true functional relationship between the
response and the set of independent factors. Usually, a low-order polynomial in some
region of the independent factors is employed. To fit polynomials to the response

surfaces the researcher employs response surface designs.

RSM is a sequential procedure. Often the exodus is a point on the response surface that
is remote from the optimum. The objective is to lead the experimenter rapidly and
efficiently along the path of improvement toward the general vicinity of the optimum.
Once the region of the optimum has been found, a second-order model may be

employed. Then an analysis is performed to locate the optimum. (Montgomery (2001)).

The eventual objective of the RSM is to determine the optimum operating conditions
for the system or to determine the region of the factor space in which operating

requirements are satisfied.

1.2 Mixture Experiments

A mixture experiment is a special type of response surface experiments in which the
factors are the ingredients or components of a mixture and the response is a function of
the proportions of each ingredient. These proportional amounts of each ingredient are

typically measured by weight, volume, mole ratio and so forth, Montgomery (2001).

In general, suppose that the mixture consist of m ingredients and let X, represent the

proportion of the ith ingredient in the mixture. Then, we must require that

X 20,i=12,.,m and ) x =1. The latter constraint makes the levels of the factors
i=1

X, interdependent as opposed to the usual response surface experiments where the

I
factors are purely independent. The experimental region for a mixture problem is a

simplex, which is a regularly sided figure with m vertices in m—1 dimensions. Scheffe’



(1958) laid the foundation for the development of mixture tools (design and models) by

introducing the simplex lattice designs and their associated canonical polynomials.

1.3 Simplex Designs

Simplex designs or mixture designs are used to study the effects of mixture components
on the response variable. A {p,m} simplex lattice design for p components consists of

points designed by the following coordinate settings; the proportions assumed by each

component take the (m+1) equally spaced wvalues from 0 to 1,

X; :0,%, %1 i=12,.,pand all possible combinations (mixtures) of these
proportions are used, Montgomery (2015).

o : : . (p+m-1
In general the number of points in a {p,m} simplex lattice design is ( . ] Ina

simplex centroid design there are 2° —1 points corresponding to the p permutations of

(1, 0, 0, ..., 0) pure blends, the (;j permutations of (%%00 O] binary blends,

(Ej permutations of (

111 1
(—,—,—,---, —j. See Scheffe’ (1963) for more details.
ppPp p

,%,%,0, ...,Ojtemary blends, .... and the overall centroid

Wl

The simplex factor space is a straight line for two factors. For three factors, the simplex

factor space is an equilateral triangle. The coordinate system used for the values
X; 20,1=12,..,m is called simplex coordinate system. The geometric description of

the factor space containing the m-components consists of all points on or inside the

boundaries (vertices, edges, faces, etc.) of a regular (m - 1) dimensional simplex



After considering Scheffe’s designs, Murty and Das (1968) developed symmetric-
simplex designs. Saxena and Nigam (1973) came up with symmetric-simplex block
designs for experiments with mixtures. Cornell (1975) proposed the use of axial
designs. Axial designs comprise mainly of complete mixture or g - component blends
where most of the points are positioned inside the simplex. An axial design’s points are
positioned only on the components axes. The designs are useful when an inquest

involves measuring component effects.

In mixture experiments, the response is assumed to depend only on the relative
proportions of the mixture components and not on the amount of the mixture, Cornell
(2002). Cornell (2002) lists a number of the products where two or more ingredients

are combined by ratio in order to obtain an end product.

1.4 Weighted Centroid Designs

An alternative to simplex-lattice designs are simplex centroid designs which were
introduced by Scheffe’ (1963). The j" elementary centroid design
n;, Jefl..m} m=2 is the uniform distribution on all points taking the form,

i
E_Zek eT, with 1<k, <k, <---<k; <m.
|

A convex combination, 7(«) = Zajnj with o = (a,,...,,,)" €T,, iscalled a weighted
j=1

centroid design with weight vector « restricted by Z“i =1. Weighted centroid

i=1
designs are exchangeable, that is, they are invariant under permutations, see Klein

(2004). The weighted centroid designs are a fundamental concept for this study.



1.5 Models for Mixture Experiments

Mixture models contrast with the regular polynomials employed in response surface

m
methodology because of the restriction, in =1 for a mixture of m ingredients. A
i=1

major impact of this constraint being that the linear models do not have an intercept.
Otherwise the regression coefficients cannot be estimated uniquely. Scheffe (1958)

came up with acknowledged polynomials for simplex-lattice designs by altering the

usual models in x, by employing the ingredients condition, to have models without an

intercept. It has to be appreciated that Scheffés polynomial models are sufficient for

good systems.

Draper and Pukelsheim (1998) came up with a set of regression functions for mixture

experiments called Kronecker or K-models. These models are based on Kronecker
algebra. Let t =(t,...,t.)" be an mx1 vector representing the ingredients in a mixture.
The Kronecker square is an m?x1 vector of cross products tt; arranged

lexicographically as;
t®t= (tltl [ PERERR ¥ R P1 ¥ PY PR P M R P tmtm)l .
The symmetry is attained along with the replication of terms.

K-models have outstanding symmetries and compacted representation and are
consistent model functions. Draper and Pukelshiem (1999) and Prescott et al. (2002)
lists numerous merits of the Kronecker model, in particular the similarity of regression
terms and reduced ill-conditioning of information matrices. Any mixture experiment
with projected response, when analyzed by means of K-models is homogeneous in

ingredients.



1.6 Statement of the Problem

Blend experiment strategy procedures are presented by Cornell (2002) for simplex and
polyhedral regions. Subsequent to selecting appropriate design and performing mixture
experiments, is fitting models used to screen the components, predict response(s),
determine ingredients effects on the response(s), or optimize the response(s) over the

experimental region.

Scheffé (1958) came up with linear mixture model in which the coefficient estimate for
a component is the predicted value of the response for that pure component. Darroch
and Waller (1985) presented D-optimal axial designs for quadratic and cubic additive
mixture models. Snee and Marquardt (1974) and Chan et al. (1998) compared the
saturated D-optimal axial design and D-optimal design for the quadratic model on the
basis of their efficiency and uniformity. Cox (1971) suggested a linear mixture model
in which the coefficient estimate for an ingredient is the projected difference in the
response at the pure ingredient and a pre-specified reference mixture. Component Slope
Linear Mixture (CSLM) regression function was postulated by Greg (2007). In the
CSLM model, the coefficient parameter for an ingredient is the estimated gradient of
the response surface in the Cox effect direction for the ingredient. Wambua et. al.
(2017), presented optimal values for the Slope Optimal Design for Second Degree
Kronecker Model Mixture Experiment with three factors for a maximal parameter
subsystem with the interaction parameter is scaled by two. From the reviewed literature
there lacks information on optimal slope designs for the second degree Kronecker
model mixture experiments for maximal parameter subsystem where the interaction
coefficient is scaled by the number of ingredients in the model. This study sought to fill
this knowledge gap. Thus the concept of slope was extended to second degree

polynomial regression and choice of optimal designs. The information matrices are



directly linked to slope matrices to derive the slope optimal information for the

weighted centroid designs.

1.7 General Objective
The overall objective of the study was to determine optimal slope designs for second
degree Kronecker model mixture experiments with application in juice blending using

selected fruits.

1.8 Specific Objectives

The specific objectives of the study were to:

(i) Derive equivalence theorem for existence of ¢, - optimal slope mixture

designs.

(i1) Derive optimal slope weighted centroid designs for second degree Kronecker

model for mixture experiments for the D- and A-optimality criteria.

(iii) Obtain numerically ¢, — optimal slope weighted centroid designs for the

maximal parameter subsystem.
(iv) Demonstrate the practical use of optimal slope weighted centroid design to

analyze data from a designed experiment on fruit blending.

1.9 Research Questions

The study was guided by the following research questions:

i)  What is the equivalence condition for the existence of optimal slope mixture
designs?

i) Are there D- and A- optimal slope weighted centroid designs for the second degree

Kronecker model mixture experiments?



iii) Can the proposed Kronecker model adequately describe blended juice quality

data?

1.10 Research Hypotheses

The study demonstrates the application of the Kronecker model in describing the

response (attributes of interest) describing juice quality based on personal preference.

The data must be assessed for compliance to model requirements and the model be

tested on whether it adequately describe the response. The following null hypotheses

were thus tested:

i)  The juice blending data are not normally distributed

ii) The Kronecker model does not adequately describe the response in the juice
blending data

iii) The Kronecker model regression parameters that describe the response in the juice

blending data are not significant

1.11 Scope of the Study

In recognition of the strong property that the class of weighted centroid designs is
essentially complete (Klein (2004)), the study was restricted to weighted centroid
designs, with the second degree Kronecker model as put forward by Draper and
Pukelsheim (1998). We present a group of weighted centroid designs and characterize
the feasible weighted centroid designs for the maximal parameter subsystem for the
mixture regression equation with two or more ingredients. After obtaining the feasible
weighted centroid designs, the slope information matrices of the designs are obtained.
D- and A-optimal slope weighted centroid designs are then derived from the

information matrices with the help of the equivalence condition. The study also



demonstrates the use of the Kronecker model in describing the sensory attributes of

blended juice from selected fruits.

1.12 Significance of the Study

Many blends are mixtures of different ingredients. In these mixtures the response is
dependent on the ratio of the ingredient in the blend. Mixture experiments are often
conducted to come up with product formulations with desirable or optimum responses.
A mixture experiment involves mixing the ingredients in various proportions within a
composition region of interest and recording the response(s) for each mixture. The
ingredients are presumed to affect the response only through the proportions in which
they are mixed. Competing designs arise. This study puts forward optimal slope designs

for use in describing dependent factor(s) in mixture experiments.
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CHAPTER TWO
LITERATURE REVIEW
2.0 Introduction
This chapter reviews the relevant theoretical and empirical literature applicable to the

study

2.1 Response Surface Designs

Response Surface Methodology (RSM) was established by Box and Wilson (1951) to
help in the enhancement of manufacturing procedures in the chemical industry. In RSM
mathematical and statistical tools are used formulate models and analyze data from
experiments with intensions of gaining optimal the response, Montgomery (2015). A
mixture of factors impacts the response through the ratios in which they are blended
together. The response is a measurable quality or property of interest on the product. In
this study it is assumed that, the experimenter can measure quantities of the ingredients
in the mixture accurately. It is further assumed that, the responses are functionally
related to the blend composition and that, by varying the composition through the
changing of ingredients amounts, the responses will also vary. The experimenter’s
motives to studying regression equations linking the response and the controllable

factors are to;

i. determine whether some combination of the factors can be considered best in
some sense
ii.  gain a better understanding of the overall system by studying the roles the

different factors in the system.

Classical experimental designs deal with comparative experiments where effects of

various treatments are compared and estimation of treatment contrasts done. On the
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contrary, for response surface designs, treatments are various combinations of different
levels of the factors that are quantitative. Here the main objective of the experimenter
is to estimate the absolute response or the parameters of a functional relationship

between the response and the ingredients.

Rotatable designs (like weighted centroid designs) have the good characteristic that the
variance of the estimated response is constant at points equidistant from the centre of
the factor space after transformation when required. Rotatable designs generate data
from the response surface that are equally spaced in all directions and are therefore
useful when no or little knowledge is available about the nature of the response surface.
The class of rotatable designs is also very rich in the sense that under many normally
employed criteria, the optimal designs for polynomial regression functions over

hyperspherical regions may be found within this class, Kiefer (1960).

Draper and Pukelshiem (1999) studied the Kiefer design ordering of simplex designs
for first and second degree mixture models by discussing the improvement of a given
design in terms of increasing symmetry as well as finding a larger moment matrix in
the Loewner ordering of matrices. The two criteria collectively explain the Kiefer
design ordering. Draper and Pukelshiem (1999) prove that for the second-degree
mixture model, the set of weighted centroid designs form a convex complete class for
the Kiefer ordering. For four ingredients, the class is minimal complete and for at least
five ingredients, the set of weighted centroid design is complete. Klein (2004) presented
optimal weighted centroid designs for second degree Kronecker model mixture

experiments.

Chan (2000) presented analytical and numerical results of optimal designs for various

regression equations for experiments with mixtures. Cornell (2002) availed a
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remarkable result on study of designs and alternative model forms. Prescott (2008)

demonstrated the use of nearly uniform designs to model mixture experiments.

In many designed experiments, resources constraints often force certain factors to be
much harder to change than others. A good method to this constrains randomization
thereby forming a split-plot structure. Geoffrey, et al. (2018) showed how the common
central composite design can be modified to accommodate the split-plot structure. They
also established conditions to make ordinary least squares and weighted least squares
estimates similar. The consequence is that standard experimental design software can

be used to analyze second-order response surfaces.

In response surface experiments, the principal interest is on prediction compared with
parameter estimation since the points on the fitted surface are predicted responses. In
choosing optimal designs, it’s important to concentrate on predictive competence of the
designs, Bradley J. and Peter Goos (2017). Lee et al. (2006) utilized response surface

methodology to optimize the enzymatic interpretation process of banana juice.

Mukesh, et al. (2016) employed RSM involving Box-Behnken Design to optimize
process coefficients in production of an extracellular acidic pectin methylesterase on
dried papaya peel under solid state fermentation. Rahul, C. et al. (2018) employed RSM
to investigate parameters in transesterification experiment. Olusola, et al. (2019)
demonstrated use of RSM in optimizing coagulation process of surface water using
Moringa Oleifera seed. Mert Gulum et al. (2019) relied on concepts in RSM in
determining optimum reaction parameters to model biodiesel production process

mathematically.
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2.2 Optimal Designs

The exodus of development of optimal designs for regression problems can be traced
to Smith (1918). Kiefer (1959) formulated computational steps necessary for selecting
optimum designs in regression problems of statistical inference. Cornell (1975)
introduced the concept of axial designs which are very useful when measuring the
effects of the components. Snee and Marquardt (1974), discussed the usefulness of
extreme vertices designs in experimentation with mixtures when the response surface
is well captured by a linear model. Chan et al. (1998) considered D-optimal axial
designs for quadratic and cubic additive mixture functions which were invented by
Darroch and Waller (1985) and compared the saturated D-optimal axial design and D-

optimal design for the quadratic model in relation to their efficiency and uniformity.

Prescott and Draper (1998) deliberated the case when the researcher is not able to
explore the entire simplex due to the additional upper and lower bound constraints
imposed on factors in the mixture for Scheffé’s quadratic equation. Prescott and Draper
(1998) remedied the predicament by proposing D-optimal orthogonal block designs and
demonstrated how to simplify the restricted region using pseudo components by
developing designs for the specifics scenario where the lower bound is located at the
origin for all but one ingredients. Aggarwal and Singh (2006) found D-optimal designs
in two orthogonal blocks for Darroch and Waller’s (1985) quadratic model in

constrained mixture blends.

Hilgers (2000), Cornell (2002) and Hilgers and Heiligers (2003) described various
situations where Becker (1968) three mixture models were employed and emerged a

better fit than the polynomial models. Aggarwal et al. (2013) present D-, A- and E-
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optimal orthogonal block designs for four mixture components in two experimental

conditions for Becker’s models and K-model.

Chan et. al. (1998a) introduced A-optimal weighted simplex-centroid designs for
Darroch and Waller*s (1985) quadratic polynomial model. Chan et al. (1998b) obtained
D-optimal saturated axial designs for quadratic and cubic additive mixture models.
Aggarwal et. al. (2008) studied orthogonal blocking of blends for Darroch and Waller’s
quadratic model using F-squares in some components which assume equal volume
fraction. Aggarwal et. al. (2008) have also given the D-, A- and E-optimalities of the

different designs with four ingredients.

Yuanzhi, et al. (2019), advanced original multistage optimization procedure to
construct D-optimal designs. This involved a two phased protocol. First was to device
conventional point and co-ordinate exchange algorithm. Second, to develop a unique
multistage optimization process to construct D-optimal designs. They also applied their

designs to experiments with non-linear regression models.

2.3 Optimal Slope Designs

It is imperative to recognize that in response surface designs the main interest of the
experimenter may not be limited to the response at distinct points. Sometimes, the
differences between the responses at various locations may be the key interest
(Herzberg (1967), Box and Draper (1980), Mukerjee and Huda (1985) and Huda

(2006a).

If focus is in the difference between responses at points close together in the factor
space, the estimation of instantaneous slopes of the response surface becomes crucial.
Estimation of slopes is particularly pertinent when the researcher intends to establish

optimal settings of the factors so as to realize the optimal value of the response.
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Atkinson (1970) introduced research into designs for estimating slopes. Subsequently,
Ott and Mendenhall (1972), Murty and Studden (1972), Myers and Lahoda (1975),
Mukerjee and Huda (1985) later contributed concepts geared towards realization of
optimal design of experiments for estimating slopes. A detailed appraisal of the past

studies in this field is provided in Huda (2006b).

Alam, et al. (2014) developed two methods of constructing multifactor mixture
experiments. First, they developed an algorithm for constructing efficient designs with
few support points using Kronecker product of single factor mixture designs. Secondly,
they constructed multifactor designs using Kronecker sum of matrices for designs
where all the factors have equal number of ingredients. They demonstrated how the

developed designs can be utilized to fit second order model.

Rabinda N. Das, et al. (2015) gives an elaborate discussion and analysis of robust slope-
rotatable designs. Huda and Benkherouf (2016) utilized the D-minimax criterion to
derive optimal designs of experiments focusing on estimation of slope of a response
surface. Huda and Fatemah (2019) employed the minimax criterion to maximize
variance of slope at a point over all design points to estimate slope of response surface.
Huda and Fatemah (2019) explored the efficiencies of exact optimal designs under the

minimax criterion.

Mitra, et al. (2020) utilized RSM simulations with bed slopes, attack angle and drift
angle as key factors to analyze the hydrodynamic performance of autonomous
underwater vehicles. Rajyalakshmi and Victorbabu (2018), constructed a second order
slope rotatable design tri-diagonal correlated errors by means of symmetrical unequal

block arrangements with two unequal block sizes.
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Many practical problems relate to investigation of a mixture of m ingredients, presumed
to impact on the response only through the amounts in which they are blended together.

The m factors, ty, to, ..., tm are such that t=0 and subject to the simplex constriction

m

Zti =1. The conclusive text by Cornell (1990) provides plentiful examples and give

i=1
a thorough discussion of both theory and practice. Earlier study by Scheffe’ (1958,
1963) recommended and analyzed recognized model forms when the regression

equation for the predictable response is a polynomial of degree one, two or three.
Scheffé (1958) devised undisputed polynomials for simplex-lattice designs by adjusting

m
the normal models in X, with the help of the simplex limitation in =1. For instance,
i=1

a linear model for three factors whose quantities are symbolized by X, X, and X,. The

expected linear response is,

EQY) = B0 4 BX + BoXo  BaXg e e (2.1)

With the simplex restriction, the intercept can be written as,

L = B (X Xy X5+ et (2.2)

This then implies that (2.1) becomes;
EQY) = (B + L)X+ (Bo+ B)X + (Bo+ Bo)Xs = BrX+ FoXo + faXgy oo, (23)
so that the intercept is removed from the model.

Scheffe’ (1958) proposed a second order model;

E(y) = Zﬁ,x, +, iﬁ”xixj ............................................................ (2.4)



17

It has to be appreciated that Scheffé’s polynomial models are satisfactory for good

systems.

Let 1m=(1, ..., 1) e R™ be the unity vector. Thus the experimental conditions t=(t1, t,
..., tm) with t>0 of a mixture experiments are points in the probability simplex,

T o=ft=(t, t,, o t.) €0 U™ L t=1b oo (2.5)

Under experimental conditions, teT_, the response Y, is taken to be a scalar

randomvariable. Replications under similar conditions and responses from separate

experimental settings are taken to be of equal (unknown) variance and independent.

An experimental design T on the experimental domain T,, is a probability measure with
a finite number of support points. If T assigns weights w1, Wo, ... to its points of support

in T, , then the experimenter is instructed to draw proportions wi, wa, ... of all

observations under the respective experimental settings.

Draper and Pukelsheim (1998) suggested the second-degree Kronecker model as an
adequate polynomial regression model for mixture experiments. Its regression equation
IS,

fiT, >R t=(t, t, .. t)>t®t=tt, ij=l,..,m, ... (2.6)
with the index pairs (i, j), 1<i<j<m ordered lexicographically. The equation is a Smooth

functional relationship:

E(Y,)=f()o= ie”tf +Zm“ (B + O oo (2.7)

where Y, the response under experimental condition t e T_, is taken to be a real-valued

random variable and 0= (6,,, 6,, .., Hmm)eiR”‘z an unknown parameter. All
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observations taken in an experiment are assumed to be independent and to have constant

variance o (0, o).

Draper and Pukelsheim (1998) put laid down merits of the Kronecker model.
Particularly that it has a more compact notation, more convenient invariance properties
and the homogeneity of regression terms. The Kronecker model also has reduced ill-

conditioning of information matrices as revealed by Draper and Pukelshiem (1999) and

Prescott et al. (2002). The moment matrix M (z7) = I f(t)f(t)'dz for the Kronecker

model of degree two has all entries homogeneous of degree four. This matrix reflects

the statistical properties of a design t.

Pukelsheim (1993) examines the general design environment. Klein (2004) asserts that
the class of weighted centroid designs is fundamentally complete for a design with at
least two factors for the kiefer ordering. Cheng, S. C. (1995) presented results for
moment matrices of designs over permutation invariant groups that showing the group
is a complete set. Consequently, the search for optimal designs may be limited to
weighted centroid designs for most criteria. For specific criteria applied to mixture
experiments see Kiefer (1959, 1975, 1978). Galil and Kiefer (1977) compared simplex

designs for second degree mixture models.

Weighted centroid designs were presented by Scheffe’ (1963). These designs are

exchangeable and hence invariant under permutations as proven by Klein (2004).

Klein (2004) abridged the work by Draper and Pukelsheim (1999) and Draper, Heiligers
and Pukelsheim (2000) by a concept that asserts the importance of weighted centroid
design for the Kronecker model. The researcher demonstrated that, in the second degree

Kronecker model for mixture experiments with at least two factors, the class of
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weighted centroid designs is a fundamentally complete class. That is, for every pe[-o

;1] and for every design 7 €T there exists a weighted centroid design n with

(@, °C, oM)(17) 2 (¢, > C, > M)(2).

Thus for every design 7 T there is a weighted centroid design » with a moment
matrix M(n) improved upon M(7) in the kiefer ordering. See also Draper, Heiligers

and Pukelsheim (1998).

Under the kiefer ordering, a moment matrix M is said to be more informative than a
moment matrix N if M is greater than or equal to some intermediate matrix F under the
loewner ordering, and F is majorized by N under the group that leaves the problem

invariant:

M>>N < M>>F<N for some matrix F.
Two moment matrices M and N are said to be kiefer equivalent when M>>N and
N>>M. We call M kiefer better than N when M>>N without M and N being equivalent.

A design 7 is kiefer better than a design & if and only if M(7) is kiefer better than M(

£).

For the information matrix obtained, the matrix is an improvement of a given design in
terms of increasing symmetry and that it is a larger moment matrix under the loewner
ordering. These two criteria demonstarte that the information matrix realized is kiefer

optimal for K'@, the parameter subsystem of interest.

2.4 General Design Problem
The problem of discovering a design with maximum information on the parameter

subsystem K’'@ can be expressed as;
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Maximize ¢,(C,(M(r))) with reT

Subjectto C,(M(7))e PD(s) 7T
where T denotes the set of all designs Tm and PD(s) denotes the set of sxs positive
definite matrices. The side condition C, (M (7)) € PD(s) is equal to the existence of an

unbiased linear estimator for K'@ under 7, Pukelsheim (1993). In which case, the
design 7 is said to be feasible for K'@ . Any design solving the problem above for a fixed

PE (-0, 1] is called ¢, —optimal for K'@ in T. For all p€ (-0, 1], the existence of

¢, —optimal design for K'@ is guaranteed by Theorem 7.13 in Pukelsheim (1993).

The formulation allows for estimation of the maximal parameter subsystem that is
unbiased. It also then points to the existence of optimal slope designs with the

necessary adjustments to the information matrices to include the slope aspect.
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CHAPTER THREE

METHODOLOGY
3.0 Introduction
Mixture experiments are allied with the examination of the m factors, assumed to
influence the response only through quantities in which they are blended together.

The mixture ingredients ti, t> ... tm are such that ti >0 and further restricted by

Zti =1. Thus the experimental region is the probability simplex,
Tm :{t:(tl, very tm)'e[O,l]m :Zti :1}
i=1

Under experimental condition t €T, the response Y, is taken to be a real-valued

random variable. In a polynomial regression model the expected value of the

response E(Y,) is a polynomial equation in t.

3.1 Equivalence Theorem
The equivalence theorem provides the necessary and sufficient conditions for the

existence of ¢, — optimal slope mixture designs. The assertion of the theorem statement

is that a weighted design 7(«) is ¢, —slopeoptimal for K'@ in T if and only if;

traceH.C.C"H/ =traceH,C’H; for all j € d(«) -
0™~ < traceHOCpH(’) otherwise e, .

with proper definition of information matrices C and adjusted slope matrix H, was

proven by employing the properties of symmetric matrices. The information matrices
involved are a linear mapping, therefore taking trace as the information function, the

theorem was algebraically demonstrated.
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To prove the equivalence theorem, sufficient conditions available from the following

two theorems are applied.

Theorem 3.1

Let o €T, be the weight vector of a weighted centroid design 7(«) which is feasible
for K'@and let o(«) = {j =12, mia; > O)}, be a set of active indices. Furthermore,
let C =C, (M (n7(a))) and p e (—1]. Then 5 (a) is ¢, —optimal for K'6 in T if and
only if;

=traceC” forall jed(a)

traceC,C*™ _
<traceC? otherwise

Proof

Kinyanjui (2007), gives the elaborate proof =

Theorem 3.2

Let pe(—ol)and n(a) with T, be a weighted centroid design that is
¢, —optimal for K'@ in T. Then the following assertions hold:
I. If o(a)={12}, then there is no further design z €T thatis ¢, —optimal for
K'@ in T, that is, n(«) is the unique.
ii.  If o(x) ={1,2,3}, then there is no further exchangeable design 7 T that is
¢, —optimal for K'@ inT.
iii. I there is a non-exchangeable design which is ¢, —optimal for K'@, then all

its support points are centroids of depths 1, 2 or 3.
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Proof

Klein (2004) postulated and proved the theorems=

A consequence of this theorem to this study is that we restricted the work to the first

two centroids 7, and 7, , hence derived weighted optimal slope designs that are unique.

3.2 Optimal Slope Weighted Centroid designs
This section presents the tools and methods that were engaged to derive optimal slope

weighted centroid designs for the A- and D-optimality criteria.

3.2.1 Slope Information matrices

The basic model for this study is the second degree Kronecker regression model. For
this model the full parameter vector is not estimable, basically due to the redundancies
introduced by repetition of terms. A coefficient matrix was employed to select a
maximal parameter sub vector. The coefficient matrix was derived by employing
unique relations of vectors formed from Kronecker products of canonical vectors.

Hence a need to demonstrate how the Kronecker products are performed.

The statistical properties of the designs are captured in moment matrices. Finally, the
slope information matrices are formed from liner combinations of the moment matrices
and adjusted slope matrices. The tools employed to come up with these matrices are as

follows:

3.2.2 Support Points of a Simplex Centroid Design

In a simplex centroid design with m ingredients, there are 2™ —1 points of support. The

m
points corresponds to the m permutations of (1, 0, 0, ..., 0) pure blends, the (2]



m
3

permutations of (%%OO Oj binary blends, ( Jpermutations of (

)1101 10)
3

ternary blends, .... and the overall centroid [ill ij , Scheffe’ (1963).....(3.2)
mmm m

Wl
Wl

The j™ elementary centroid design 7 ;v Jell, ..., m}, m>2 is the uniform distribution

on all points taking the form

j
1> e €T, with I<ka<ko< ... <KISML oo (3.3)
i=1

m
A convex combination, r(a) = Zajnj ,with o = (..., ,,)'e T, , is called a weighted
j=1

centroid design with weight vector o restricted by Z“i =1.
i=1

3.2.3 Kronecker products
The Kronecker product of a vector s € R™ and another vector t e R" is a vector of

order mn,

in  lexicographic order

This study utilized the canonical unit vectors in R™ denoted by e,,...,e,,. The vector

e

; Is taken as the Kronecker product of the vectors € and e;, for i, j = {1,2,..., m}. The

m
2

canonical vectors in SR( j are denoted by Ejj;, ordered lexicographically according to

their indices (i, j) € {L,2,..., m}* with i<;j.

The model around which the study revolves is the second degree Kronecker model with

expected response:
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E(Y,)=f(t)0=(t®1)0= ieiitf + Z (PR 9 SR, (3.5)

where f(t) =t®t and unknown parameter vector,
0=0,, 6, .., 6,)eR".
The whole parameter vector for the model is not estimable. This necessitates the

estimation of selected parameters from the whole vector. The study selected the

maximal parameter subsystem of interest with the use of coefficient matrix.
3.2.4 Coefficient Matrix

Let e,,...,,, denote the unit vectors in R™ and Ejj denote the canonical vectors in ‘R(Z)

that are ordered lexicographically according to their indices (i, j) € {1,2,..., m}* with
i<j. The unit vector e; is for this study the Kronecker product of the unit vectors ¢ and

e;, fori, jc{12,.,m}.

The coefficient matrix K that aided in selecting a maximal parameter subsystem for the

Kronecker regression function with a fixed number of ingredients, was defined as;

2 m+1
K =(K1,K2)emm [2 ] .......................................................... (3.6)

where;
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and

m

1 :
Ky == (8 +€)E] oo (3.8)
Mija
i<j

The matrix K is of full column rank. The parameter subsystem K'@ of the model (3.5)
considered in this study can be written as;
(eii)lsism

K'o=11 ei)L{[ZJforall6’69%”“2 andm>2. ... (3.9)
E(eij + 65 1cicjem

m+1

3.2.5 Moment Matrix

An experimental design  is a probability measure on the experimental domain with a
finite number of support points. Each support point s e supp(t) directs the experimenter
to take a proportion T({t}) of all observations under experimental condition T. The

statistical properties of a design are reflected by its moment matrix:

M (7) =j f (&) f(t)'dre NND(M?), ovveeooeeeeeeeeee (3.10)

where, NND(m?) denotes the cone of nonnegative definite m2xm2 matrices. The entries

of M(t) are fourth moments of 1, since the regression function f(t) is purely quadratic.

The unique moments of order four are, for j=1, 2, ..., m:
1 j- . .
) = , V= Y=—23"" and __U-9G-2 ... @311
'Ll4(77J) j3m /u31(77]) ’uzz(nl) J3m(m_1) /'lzu(nj)_ j3m(m—1)(m—2) ( )

3.2.6 Information matrix
In many applications of response surface methodology, good estimation of
derivatives of the response function may be as important or perhaps more important

than estimation of the mean response. We know that to maximize the response, the
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movement of the design center must be in the direction of the directional derivatives

of the response function, that is, % Certainly the computation of a stationary

point in a second-order analysis or the use of gradient techniques for example, the
steepest ascent of ridge analysis relies on the partial derivatives of the estimated
response function with respect to the design factors. Since the designs that achieve
certain properties in Y (estimated response) do not enjoy the similar properties for
the estimated derivatives (slopes), we reflect on experimental designs that are

constructed with derivatives in mind.

In practice, frequently we are concerned with investigation the slope of the response

surface ata point t, not only over the axial directions, but also over any indicated path.
We established the concept of robust slope over all directions. Define D, a matrix
derived by differentiating the function f (t)'¢ with respect to each of the m independent

factors, (see Sung. et al (2009)). That is;

!

J , Wwhere, f()=te®t (3.12)

p_[d® a'®) o'
ot, " at, ot

. m+1 ) .
Define also an mx[ ) j adjusted slope matrix

Hy = DK oo e (3.13)

The amount of information a design t contains on K’ ¢ is contained in the information

matrix:

C(M(1))=min{LM(1)L’ | L e sn{ S K=

[mzﬂJ b o
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m+1) (m+1) . : .
Where | 1) denotes the > Xl 5 identity matrix and L is the left inverse of

"
K defined as,
L= (KK T K e, (3.15)

The above minimum is interpreted relative to the Loewner ordering on the space

m+1 o (m+1 m+1 ) _ _
sym(( 5 B of symmetric ( 5 jX( ) j matrices, defined by A<B if and only

if B— Ais nonnegative definite.
The information matrix C«(M(t)) is the precision matrix of the best linear unbiased
estimator for K’0 under design 1, see Pukelsheim (1993, chapter 3). The information

matrices for K’0 takes the form:

¢, = LM (7)L e NND[(me ........................................................... (3.16)

where L= (KK)7K"

To get the information matrix for the design 7(«) we used the linear function;

C,=Cc(M(n(a))=a,C,(M (1)) +a,C, (M(12,)) ceneeeeeeeieee e (3.17)
where
CoM (7)) = LM (7))L oo (3.18)

is the information matrix for the jth centroid.

Thus the information matrices for K’0 are linear transformations of the moment
matrices.

Then, we consider optimizing for a particular criterion the slope information matrices
for K’0 of the form:

C=HoCoHy eNND(M) ...t (3.19)
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3.2.7 Optimal Slope Weighted Centroid Designs
The problem of discovering a design carrying maximum information on the parameter
subsystem K'& can be formulated as;

Maximize ¢, (C«(M(1))) withteT

Subject to Ck(M(1))e PD(m) ...oovevnvniniiniiiiinenn, (3.20)
where T denotes the set of all designs Tm. The side condition C, (M (7)) € PD(m)is
equal to the existence of an unbiased linear estimator for K'@ under t, Pukelsheim
(1993). In which case, the design t is called feasible for K'@. Any design solving

problem (3.20) above for a fixed p e (—oo,1] is called ¢, —optimal for K'@ inT. For

all pe(—xo,1], the existence of ¢, —optimal design for K'@is guaranteed by

Theorem 7.13 in Pukelsheim (1993).
The formulation allows for estimation of the maximal parameter subsystem that is
unbiased. It also then points to the existence of optimal slope designs with the necessary

adjustments to the information matrices to include the slope aspect.

Suppose 7 () satisfies the side condition C«(M(t))e PD(m) and write Ci=C«(M(7;) )

for j=(1, 2, ..., m). For all p e (-,1], n(a) solves problem (3.23) if and only if;

traceH.C.C ! =traceH,C’H; for all j e d(a) (3.21)
0™ 0 ﬁtraceHOCpHg otherwise T .

Weighted centroid designs are exchangeable, that is, they are invariant under
permutations of ingredients. This fact considerably simplifies the solving of optimality
condition (3.20). The set of weighted centroid designs is a convex complete class

relative to Kiefer ordering.
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3.2.8 Optimality Criteria

The most prominent optimality criteria in the design of experiments are the determinant

criterion ¢, , the average-variance criterion ¢ -1, the smallest eigenvalue criterion ¢__ and
the trace criterion ¢, . These are a particular cases of the matrix means ¢ with parameter
pel-o;1].

The optimality properties of designs are determined by their moment matrices
(Pukelsheim 1993, chapter 5). We computed optimal design for the polynomial fit
model, the second degree Kronecker model. This involved searching for the optimum

in a set of competing moment matrices. The matrix mean ¢, which is an information

function (Pukelsheim (1993)) was exploited in this study.

The amount of information innate to C(M(r )) is provided by kiefers ¢ -criteria with

C(M(1))e PD(m). These are defined by:

Anin(C) i p=—0
4,(C) = (detC)™ if p=0 (3.22)
[ﬁtracec"]p if pe[-01]\{0}
for all C in PD(m), the set of positive definite mxm matrices, where A min(C) refers to

the smallest eigenvalue of C. By definition ¢, (C) is a scalar measure which is a

function of the eigenvalues of C for all pe[-«;1]. (See, Pukelsheim 1993, chapter 6).
For optimal slope designs we considered optimizing the information matrices of the
form C =H,CyH,. The class of ¢ -criteria includes the prominently used T-, D-, A-

and E-criteria corresponding to parameter values 1, 0, -1 and -oo respectively.

Defining the group
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R, O
H={H=| ~ L OTEG b, (3.23)
0 S,
With R, =>e e, and S, = ZE(”(
i=1

m
nE'y € per for all =8, where
5o o ! 2
i<j

(ﬂ(i),n(j))T denotes the pair of indices 7, 7(;, inascending order, and J,, denotes the

m+1
symmetric group of degree m. The set H is a subgroup of perm [( 5 D the set of

m+1) (m+1 . . . . .
) X 2 permutation matrices and is isomorphic to 4, . This group acts on the

m+1
space sym[( ; D through congruence transformation. The group perm(m) of mxm

permutation matrices acts on the set T of designs through (R,t)— X =zoR™. The
direct implication of exchangeability of weighted designs is that, for any design 7 €T
then r=1" for allR € perm(m). The equivalence property:
C.(M@*))=C,(R. ®RIM@)R. ®R.) =H C,M@H.. +erveveremee.. (3.24)
forall 7@ and 7 eT links the action of H on Cx(M(t)) to the action of perm(m)
on T (see Klein 2002). This now means that the information matrices involved in this
study lie in the quadratic subspace Sym(m,H) of H-invariant symmetric matrices
defined as:
sym(m,H)={C, esym(m): HC,H'=C, for all HeH]

This group is closed under formation of matrix powers C" with ne N. A particular

m+1
case of the quadratic subspace of sym(( 5 ] H ] is analyzed in Koske and Kinyanjui

(2007).
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It is possible to obtain a characterization of feasible weighted centroid designs for the
parameter subsystem K'@ of interest since the set of weighted centroid designs is a

convex complete class relative to Kiefer ordering.

3.3 Numerical Optimal Slope Weighted Centroid Designs
We generated numerical ¢, —optimal slope weighted centroid designs for the A- and
D- criteria for m < [5,20]. These were based on the general expressions for the weight

vectors and optimal values for each case of a design with m ingredients. The
information matrices were explored in the context of the properties of the feasibility

cone in which they are contained.

3.3.1 The Quadratic Subspace sym(s,H)
Since H is a subgroup of the permutation matrix group, H-invariance of a matrix

C e sym(s) means that certain entries of C coincide. The following lemma describing
) m-+1 . ) )
the linear structure of sym(s,H), (S = ) ), shows that an H-invariant symmetric

matrix has at most seven distinct elements.

Lemma

We define the identity matrices U, =1 and W, = I( ,andwrite1, = (LL---1)’ e R"

2

. Furthermore, we define

U, =11, — 1, e sym(m), V, = iEij(ei ve)e m(ZJxm, v, = zkz E, el col?
ij= i, j=1k=1
i<j i<j kefi,j}

xm
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W, = i i E,EL < sym&n;]) . W, = Zm: Zm: E,En < Sym[[r;]] |

i, j=1k,I=1 i, j=1k,1=1
i<j k<l i’<Jj k<l

{i, pdk.1) =1 {i, i3nik.1}=¢

Then any matrix Ae sym(s, H) can distinctively be represented in the form

7)

al, +bU, cV)+dv,
A= CVl+dV2 e|(m + sz +gW3 ...................................... (325)

With coefficients a,---,g € R. The terms containing V2, W> and W3 only occur for
m >3 and m >4 respectively, Klein (2004).
4 for m=2

In particular, dimsym(s,H)={6 for m=3,
7 for m>4

The information matrices for the designs studied definitely belongs to this space.

The matrix (3.25) can be partitioned according to the block structure,

A=(Ail Aélj ................................................................... (3.25a)
Ay Ay

m xm m
with A, esym(m), A, em[zj and A, € sym[(ZD. From the linearity of the
information mapping A, we have, forevery ¢ €T,

AM@@)))= D &AM seeeeeeneeeeiiie i (3.25b)

jed(a)

with o(a) ={j =12,...m:a; >(}.
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Since the information matrices A; = A M (7;) are non-negative definite, this implies;

RAM @)= D RA).

jeo(a)

The above equation suggests studying the ranges of the information matrices; A1, Az,
..., Am of the elementary centroid designs. These matrices can be calculated by

invoking the linear transformation to moment matrices M(7;) given by Draper,

Heiligers and Pukelsheim (2000).

For j=1,2, ..., m, we obtain

A = [A“"' Mo j ............................................................... (3.25¢)
Aoy Ay
with blocks
1 1 j-1 2 j-1. 2 j-1j-2
= | + u,, o= V, +— V, and
A i'm " Pmm-1? Pou iPmm-1" Pmm-1m-2°
4 j-1 4 j-2j-2 4 j-1j-2j-3
L= -— 1, + W,,......... 3.25d
Ao iPmm-1 (';] Pmm-1m-2 ° Pmm-1m-2m-1 ° (3-:25d)

3.3.2 Multiplication Identities for Information Matrices
Multiplication identities of the matrices in Quadratic Subspace sym(s,H) are as
follows:

Q) Products in spanfU,,U,}

m-1 m-2
VV,=(m-1U, +U,, V2'\/Z=( 5 jU1+( 5 jUZ,

VV, =VN, =(m-2U,, UZ=(m-1U,+(m-2U,.
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(i)  Productsin span{V,,V,}

VU, =V, +2V,, V,U, = (m=2)V, +(m-3)V,,
W,V, = (M=2\V, + 2V,, W,V, =(M=2V, +2(M =3\, ............(3.27)

m-—2 m-3
W3V1 = (m _3)\/2’ stz = 2 1t 2 2"

(ilf)  Products in spanfW,,W,,W,}

V)V, = 2W, +W, , V,V, = (M= 2)W, + (M —3)W, + (M —4)W,,

VV) =,V =W, + 2W,, W2 =2(m—2)W, + (M—2)W, +4W,,......(3.28)

, (Mm-=2 m-3 m-—4
W3 = 2 1t 2 ) T 2 3
W2W3 :W3W2 =(m —3)W2 +2(m —4)W3 .

(Results available from Klein (2004)).

3.4 Sensory Evaluation Experiment

The designs developed were employed in assessing the sensory attributes of various
mixtures of juices. The mixtures were formulated using two, three and four ingredients.
The ingredients actually refer to the different selected fruits making the mixture. The
attributes focused on were texture, colour, taste and smell. The rating of the attributes

was based on a 15-point scale.

The candidates involved were first taken through a training on how to taste and assign
distinct scores on the various attributes. This was done to prepare them for the task and
guide them on how to objectively assign scores on the various samples (juice blends)

one tasted. In between samples the candidates rinsed the mouth using distilled water.
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This basically was to clean the mouth, so that the attributes of one sample do not

influence the ratings of the subsequent sample.

After training, a pilot experiment was conducted to ascertain the effectiveness of the
procedure for mixture preparations and efficiency of the data collection tool, the
guestionnaire, as well as to ensure that it was sufficient. After the pilot experiment,
necessary adjustments were made on the preparation procedure and the construct of the
guestions on the questionnaire. The participants were required to sign a consent

validating their willingness to voluntarily take part in the study.

Then the experiment was conducted as follows: Pure blends of juices were prepared
for the fruits involved. Then variations were then made on the blend formulations using
the ratios as directed by the appropriate support points for the design. The amounts to
be tasted, ‘samples’ were put in clear containers since colour was one of the attributes
scored. The designs involved have finite support points, a decision was made on the
eventual sample size. Each formulation was replicated four times. This was done to
allow for the estimation of error and improve on the precision of estimates. Then the
participants were availed samples to taste that bore labels that they noted on the
questionnaires. The labels represented specific formulations only known to the
technical assistants and the lead researcher who supervised the conduct of the

experiment.

Randomization was actualized at the point of entry of the participants and in placing
the samples on the benches. This was done to ensure that the observations were
independent within and between formulations (mixtures/juice blends/samples). The

participants were not made aware of the composition of the mixtures.
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3.4.1 Model Validity

The model validity provides necessary examination to the fitted model to guarantee
that it offers a good approximation of the true response surface. The process begins
with tests to confirm whether the data agree to the assumptions of the model. Then,
testing for the significance of individual factors to testing the validity of the overall
fitted response. The requisite test statistics and probability values (p-values) were

generated from the SAS (version 8) software.

3.4.1.1 Testing for Model Assumptions

Data that are fitted the Kronecker model need to be independent with a constant
variance. The error terms are independent and normally distributed. Scatter plot would
show if the data are distributed with a constant variance. A normal probability plot for

the residuals shows whether the errors are normally distributed or not.

3.4.1.2 Testing for the Overall Model Fit

Analysis of variance (ANOVA) and Coefficient of variations were used to examine the
fitted Kronecker model. From the ANOVA table (generated from the SAS software),
the p-values were compared with the level of significance (« ) to make a decision on

whether the model fit was adequate of not.

3.4.1.3 Testing for the Adequacy of Parameters

To test the adequacy of each parameter (the significance of a factor or interaction) in
the model, we employed student t-test based on the p-values from the analysis output
from the SAS software. The parameter with the smallest standard error was considered

better than the others.
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CHAPTER FOUR
RESULTS AND DISCUSSIONS
4.0 Introduction
This chapter presents the findings and analysis of the study as set out in the research
methodology. The requisite equivalence relation is presented as well as derivations of

optimal slope weighted designs for particular criteria.

4.1 Equivalence Theorem

The theorem provides the necessary conditions for the existence of ¢, — optimal slope

mixture designs. This theorem provides a necessary and sufficient condition applicable
to the specific problem of this study. The object here is to solve the design problem;

Maximize ¢,(C«(M(1))) withteT

Subject to Ck(M(T))e PD(M) ..oeovnieiiii e (4.0)

Suppose 7 () satisfies the side condition C«(M(t))e PD(m) and write Cj=C«(M(7,) )
for j=(1, 2, ..., m).

Theorem

Let o €T, be the weight vector of a weighted centroid design r(«) which is feasible
for K'6 and let () = {j =12, m:a; > 0)}, be a set of active indices. Furthermore,
let C =C,(M(n7(2))) and p e (—0,1]. Then n(a) is ¢, —slopeoptimal for K'¢ in T

if and only if;

traceH.C.CPH’ =traceH,C"H; forall jed(a) @.1)
0™ j 0 StraceHOCpH(’) otherwise T .
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where, H,=DK is an adjusted slope matrix with for a slope matrix defined as

!

o [ am et
a0,

J for a regression vector, f(t) =t®t

Proof
We begin by adopting the following theorems (3.1) and (3,2), that provides a sufficient

condition for existence of ¢, —optimal designs for K’@ and their uniqueness.

The two major arguments of the proof are the linearity of the information matrix

mapping as depicted by equation (3.10) and the fact that 7(T,,) is the convex hull of

the elementary centroid designs 7,,77,,---,7,, -

From the equivalence theorem 7.19 in Pukelsheim (1993), that 7(«)is ¢, —optimal

for K'@ in T if and only if there exists a generalized inverse G of M =M (n(a))

satisfying

traceM(77(3))GKC P*K'G’ <traceC® forall BeT, ......ccovvveernnnn.... (4.1.1)
with
C = (KK)'KMK(KK)™*, M =K(KK)*KM and M (#7(8)) = KC, (M (7()))K",
To incorporate the slope concept, we rewrite (4.1.1) as;

traceH,M (77(8))GKC*K'G'H/ <traceH,C°H/ forall BT ................... (4.1.2)

where H, = DK .

The left-hand side may be written as,



40

traceH,M (17(3))GKC **'K'G'H’ =traceH, (K'GMK (K'’K)™)'C, (M (17(3))) (K GMK (K'’K) )CP*H;

Due to the feasibility of 7(«), we have R(K) =R(M).

Now the right-hand side of equation (4.1.3) simplifies to traceH,C, (M (7(3)))C"H,

and the equation turns into traceH,C, (M (7(B)))C"*H} <traceH,C"H, for all

peT,.
Since the information matrix is a linear mapping then it can be expressed as

C.(Mn(a))) = iajck(lvl(nj), with (@) =1{j = (L2,---,m: a; >0)}. We then can

jed(a)

write the left-hand side as »_ s;traceH,C,C"*H,. Giving

j=1
traceH, C,C"™"H, <traceH,C"H forall 1< j<m.
Finally, is the assertion that equality must hold for any j € o(«) *

In addition, the weighted centroid designs with first and second weights being positive

are unique, Klein (2004).

4.1.1 A- Optimal Slope Weighted Centroid Design
This section presents the slope optimal weighted centroid designs for the average
variance criterion, ¢ .

4.1.1.1 A- Optimal Slope Weighted Centroid Design with Two Ingredients
The first case is a mixture experiment with two ingredients. According to (3.2), the

weighted centroid design has three support points (1, 0), (0, 1) and (¥, %2). The slope
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2

weighted centroid designn(«) = Zajnj =a,n, +a,n, With a=(a,,2,,00)eT,
j=1

and o, +a, =1, encompassing (from (3.3)) two elementary centroid designs;

S

The Kronecker model (as defined in 3.5) has four parameters which are not all

N|FR N

estimable. We chose the maximal parameter subsystem by using the coefficient (K)

1 0
matrix for the design. Using the unit vectors e, = [Oj e, = (J and E, = (1) we have

for m=2in (3.7) and (3.8);

K1 =€, '+ezzez ‘=

o O O -
O O O

and

O Nk Nk O

which when substituted into (3.6), gave the coefficient matrix,
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A
Il
ON| RPN |FRO

5 e (822)

The moment matrix for the weighted centroid design with two ingredients from (3.10)

Hy  Hzn Hz: Hp
My Hypp Hay
Mz Hyp Hyp Han .
Hypp Mz My Hy

Using the definition of the fourth order moments (3.11), for m=2 these moment

matrices for two centroids 77, and 77, are respectively;

M(n,) =

O O oN|k
O O o o

O O o o
NI—,RFO O O

and

M(@p,) =16 16 16 16\ (4.4)
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We obtained the left inverse of the coefficient matrix (4.2) using (3.15) as;

—
Il

o o =

= o o

= o o

o kO

Then, for the design 7, , the information matrix using (4.5) and (4.3) in (3.18) is;

1/2 0 0
Co=| 0 1/2 0 oo (446)
0 0 0

For the design 77,, the information matrix was obtained using (4.5) and (4.4) in (3.18)

as

1/16 1/16 2/16
C,=|1/16 1/16 2/16
2/16 2/16 4/16

From equations (4.6) and (4.7) we got the information matrix for the design 7 («) using

the linear function (3.17) that was to be adjusted for slope as;

8a, +a, A a,
16 16 8
c,=| % Smta & (4.8)
16 16 8
% % %
8 8 4

To get the A- optimal slope design we proceeded as follows. First by condition (3.21),

putting p=-1, we have that 7 («) is ¢, —slope optimal for K'@ in T if and only if

traceH,C,C, “Hy =traceH,C, 'H; forall je{1,2}
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The inverse of the information matrix (4.8) is;

2 -1
o a,
2 -1

C' =[CM@m)I'=| 0 —  —

o o
-1 -1 4o +a,
A A A% (4.10)
which on squaring yields,
5 1 — (4, +3a,)
alz alz 05120‘2
-2 1 5 — (4o, +30a,)
Co "= 2 2 2
2 2 o, a,
— (4, +3a,) —(4a, +3a,) 16a +8aya, +3a}
o %, wop ) (4.12)

The slope matrix for the design with two ingredients using equation (3.12) is

Dz(Ztl Lot Oj ............................................. 412)
0t t 2t

This using equation (3.13) gave an adjusted slope matrix

2. 0
H, = DK =
0 2t, t

For j=1 in equation (4.9),
traceH,C,C, “H} =traceH,Cy THY . .oooeeee oo (4.14)

We have from equations (4,6), (4.11) and (4.13);



, 2017 - 2(4a, +30,) i a4t 2(4a, +3az,) 2
_ a a
H,C.Co "Hy == 2 2
20 at, - 2(4a, +3a,) 2 20— 2(4a, +30,) i,
a, a,
The trace of (4.15a) is;
traceH,C,C, *H, = ! > {20('&2 +17) —Mtﬂz} = 47%—2_40!1
2a; 5 200,

5 .
2 _ _
after substituting for t= 2’ 1=12 gng - =

B

Also, from equations (4.10) and (4.13);

HCHY = 1( 8t —4tt, +bt> —2t2 +(b-2)tt,
oCo Mo = o (bt B _atg, sbr )
where
4o, +a, ., 5 . 1
b:;—zz’ti :Z'IZl'Zand t1t2:_

The trace of (4.16a) is;

traceH,C, H/ = i[8(t12 +12) -8tt, +b(t’ + tf)]: Moy + 200,
o, 204,

Using equations (4.15b) and (4.16b) in condition (4.14) gives;

47a, —4a, 4la, +20a,
20la, 20,0,

This after employing the strict relation «, =1—¢, yielded the equation,

21} —92a, +47=0

45

ceeren(4.152)

....... (4.15h)

......... (4.16a)

........ (4.16b)
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with solutions; 3.790504535 and 0.590447846. Therefore, ¢ =0.59044784¢€ since

o, €(01)
Similarly, for j=2, in condition (4.9) we obtained the necessary condition as,
traceH,C,C, “H, =traceH,Cy "HY. ..oovveeioieeeieeee . (4.17)

The left hand side of this condition was gotten by evaluating the product of (4.7), (4.11)

and (4.13);
_ —1 (4t +(4+2a)tt, +2at; 42 +(4+2a)tt, + 2at’
H,C,C, *Hy = L 12+( +2a)tt, + 2 22+( At + tg .....(4.182)
2o, \ 4t + (4 + 2a)tt, +2at,  4t; + (4+2a)tt, + 2at;
where
bay+a, ., 5 . 1
a=-—2"72 t?==i=12_  tt, ==,
a, 4 and 2 ™ 4
The trace of (4.184a) is;
traceH,C,C, 2H, =22 3% (4.18b)
aa,

Using equations (4.16b) and (4.18b) in condition (4.17) led to the equation;

12a, —3a, 4lo, +20a,

2
o, 204,

From this equation together with the relation o, =1-a, resulted in the quadratic

equation
21a? +50a, —24=0,

with solutions -2.790504535 and 0.409552154. Hence, «, =0.409552154 since

a, €(0))
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Thus for m=2 ingredients, we have the A- optimal slope weight vector;
o, =0.59044784€and o, =0.409552154............... (4.19)

Therefore, in the second-degree Kronecker model for mixture experiments with two

ingredients, the unique A- optimal slope design for K'@ s
n(a®) = o, + a,m, =0.590447846;, +0.409552154;,

From equation (3.22), the average-variance criterion, for a nonnegative definite matrix

C of order s is given by;

V() = GtraceC‘lj_ ........................................................... (4.20)

At present the average-variance criterion, is obtained for the information matrices of

order m=2 from the relation;

1 20
v(g) = (g”a‘:eHoCo lHOJ ............................................. (4.20)

Now, from (4.10), (4.13) and (4.19) we obtained;

1., 1
HoCo 1H0 N da,a [
12

200, +41a, 4oy -1l |_[ 2056816162 2215790169 o)
4o, —1l, 200, +41e, | |—2.215790169 2956816162 |

Hence using (4.20) and (4.21), we got;
V(g,) =(29.568161629 " =0.033820163..........coeeeiieiiieieeeeiiie (4.22)

4.1.1.2 A- Optimal Slope Weighted Centroid Design with Three Ingredients
The second case is a mixture experiment with three ingredients. From (3.2) this

weighted centroid design has seven support points are as shown in table 1.
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Table 1: Support points for the three ingredients centroid design

Design Ingredients

point ty t2 t3
1 1 0 0
2 0 1 0
3 0 0 1
4 Ya Ya 0
5 Ya 0 Y
6 0 Y Y
7 Ys iz iz

3
The optimal slope weighted centroid design is n(a):Zajnj =a,n, +a,n, With

j=1
a=(a,2,,0,00eT, and o, +a, =1. According to (3.3), the design with m=3

ingredients has three centroids. These are:

1 0 0 1/2)(1/2)(0 1/3
m =40} , |0p ., =5|2/2}]|0 ||1/2|r and n, =4|1/3
0 0 1 0 1/2)\1/2 1/3

The Kronecker model as defined in (3.5) has nine parameters all of which are not all
estimable simultaneously. We chose the maximal parameter subsystem (consisting of
six parameters) by using the coefficient (K) matrix. This matrix was arrived at using
by using the unit vectors

e, =1 0 0), e,=(0 1 0), &,=(0 0 1), E,=(L 0 0), E,=(0 1 0)

!

and E,=(0 0 1)
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With these vectors for m=3in (3.7) and (3.8), we got the submatrices for the coefficient

matrix as;

Kl = ellell+e22e2 I"‘esaez =

O O O O oo oo o
O O O o O o o o
P O O O O o o o o

and

(@)
o O

O wl=
o O O o o

K2 = (elZ + eZl)E£2 + (el3 + e3l)E{3 + (e23 + e32)E£3 =

O O O wk

O wl-

O O O O O wke
O O wk
O wl-

The two matrices were then substituted into (3.6), to give the coefficient matrix,
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0 0
0 10
3
000010
3
000100
3
K= 0 0O
1
0 0 0 =
3
000010
3
00000%
001 00O

The moment matrix the weighted centroid design which has all moments being of order

four is from (3.10);

Hy  Hy  Hzy Hz;o My Hon Ha Hon Hap
Hz Hyp  Hon My Ha: Mo Mo Mo Hon
Hz o Han  Hypo Hon Mo Mo Hpo Han o Ha
Mz My Moy Hypp  Ha Hoan Mo Mo Hon
M) =| 1 My Mo Ha  He My Han  Hao My
Mo Hou Honn Hon Mz My Han Hyp  Hay
Mz Han My Hon HMan Honn Mz Mo Ha
Moy Houn Honn Mo Han My Mo Hypp  Hy
My Hur Ha Hon Hp Ha Ha  Hay Hy

Using the definition of the fourth order moments (3.11), for m=3 ingredients the

moment matrices for two centroids 77, and 77, are respectively;



M(n,) =

and

1/24
1/48
1/48
1/48
M (n,) =| 1/48
0
1/48
0
1/48

1/3

O O O O O O o o

O O O O O O o o o

1/48
1/48

1/48
1/48

o O O

0O 0 O

0O 0 O

0O 0 O

0O 0 O

0 0 1/3

0O 0 O

0 0 O

0 0 O

0O 0 O
1/48 1/48 1/48

0 1/48 1/48
1/48 0 0

0 1/48 1/48

0 1/48 1/24

0 0 1/48
1/48 0 0

0 0 1/48
1/48 0 1/48

O O O O O O O o o

O O O O O o o o o

o O O

0
1/48
1/48

0
1/48
1/48

O O O O O O o o o

1/48

1/48
0
0
0

1/48
0

1/48

o O O o

o O

1/3

o O O

0
1/48
1/48

0
1/48
1/48

1/48
0
1/48
0
1/48
1/48
1/48
1/48
1/24

o1

. (4.25)

The left inverse of the coefficient matrix using the coefficient matrix (4.23) is;

L=(KK)'K'=

1 0 0
0 0 0
0 0 0
0 3/2 0
0 0 3/2
0 0 0

3/2
0
0

o O O O +— O

o O O O o

3/2

o O O o

3/2
0

o O O O o

3/2

O O O » O O

Then, we obtained for the design 7, the information matrix using (4.24) and (4.26) in

(3.18) as;



1/3

o O O o

0O 0 O
1/3 0 O
0 1/3 0
0O 0 O
0O 0 O
0O 0 O

O O O o o o

O O O o o o
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For the design 77, , the information matrix was obtained using (4.25) and (4.26) in (3.18)

as

1/24
1/48
1/48
1/16
1/16

1/48
1/24
1/48
1/16
0
1/16

1/48
1/48
1/24
0
1/16
1/16

1/16
1/16
0
3/16
0
0

1/16

0 1/16
1/16 1/16

0
3/16

0 3/16

0

0
0

From equations (4.27) and (4.28) we got the information matrix for the design 7 («)

using the linear function (3.17) that was later adjusted for slope as;

Co =C (M (n7(a))) =

8a, +a,

24
LA
48
2
48
%
16
%
16
0

a;
48

8o, + a,

24
%
48
73
16
0

a,

16

%
48
%
48

8a, +a,

24

a,
16
@,
16
0

32,
16

a4
16
0
273
16
0

3a,
16
0

. ...(4.29)

To get the A- optimal slope design with three ingredients we proceeded as follows.

First by condition (3.21), putting p=-1, we have that »(«) is ¢, —slope optimal for

K'@ in T if and only if



traceH,C,C, “H; =traceH,C, "H{ forall je{L2}....ocooviviviriiiiiinn, (4.30)

The inverse of the information matrix (4.29) for the design with three ingredients is;

o o o
o > o 1 0 -1
o o 241
0o o = 0 -1 -1
clo o, o, oy
ozt 2ty 2Bate) 1 1
o o 3o, 3o, 3o,
-1 0 -1 1 2(8a, + ) 1
a, a, 3oy 3o, 3,
=T T 1 28 +a)
A& 3y 3a, S ) (4.31)
which on squaring yielded the matrix;
a b b c c d
b a b c d ¢
b b a d c ¢
Cla)]? =
[Cle)] c c d e f f
c d c f e f
d ¢ ¢ B T &) (4.32)
where:
_ - 8(27a} +2a, +3
=1—1,b=i2,c: 4(40512+3az),d= 22,e= (27a; : fcl )and
a; o 3o, a, 3ot 9/ a,
. 2(16c, +7cx,)

2
9/ a,



54

The slope matrix for the design with three (m=3) ingredients using equation (3.12) is

2 t, t, t, 0 0t 0 O
D=[0 t 0
0 0 t

2t 0 0 2t, %t, O
Hy=| 0 2t, 0 2t 0 2t
2t 2
T L LY (4.34)
when j=1 in (4.30), the necessary condition is;
traceH,C,C, “H} =traceH,C, "Hy. ....ccoovieiiiiiieiiieeiee L, (4.35)

We used (4.27), (4.32) and (4.34) to obtain;

. 4487 +4c(tt, +tt) At +4(ctl +dtt) At +4(ct? +dit,)
HoC.Cy “Hy =——5 | 4tt, + £(ct] +dtt,) 44t +4c(tt, +t,t,) 4Lt +2(ct] +dtt) | ...(4.36a)
Platt A (et +dtt,)  Att + (et +dtt,) 44t + Ee(tt, +tt,)

where:

- M +3a;) 4 =2 t? :Q,i =1,2,3 and tt, :E,i #j=12,3
3a, v 3 18 36 .
The trace of (4.36a) is;
traceH,C,C, °H, = 5430z, ;4160[1
8lo, a,

.................................................. (4.36D)
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Also, from (4.31) and (4.34) we got;

—12t7 + 24, + )+ Ea(ty +1)) + Sbtt,  £(7+17) +2bt] + £ (att, + btt, + b t,)

H,C, 'Hi = ;7 317 +17) +4bt; + £ (att, + bt +btty)  —12t7 +E(tt, +t,t,) + £a(t) +t) + Ebt,
TS 1) + bt + (ath, +btt +bt) 4t +t2)+ £bt] + £ (btt, + btt, +att,)
417 +12) +£bt] + £ (btt, +att, + b t,)
(7 +15) +5bt? + 5 (bt +btt, +att,)
—126 + 3 (4, + k) + 2a(t’ +t7) + Sbtt, ..(4.373)
where:
- 28a, + -1 29 . 13 . .
a-—2Bata) 1o 295 453 009 b =20 ix =123
3a, . 3 18 36 _
Trace of (4.37a) is;
traceH,C, "H' = ;—1[(—12+%a)(t12 SR ) 4 (B Eb) (L, +t 1t = M (4.37b)
1 142

Using (4.36b) and (4.37b) in condition (4.35) gave the equality relation;

5430a, —416c;;, 18560, + 4488,
81’ a, 8loar, '

This after using the equality, @, =1—¢, yielded the quadratic equation,
26320 —10334a, +5430=0,

with solutions 0.6249112749 and 3.301380518. But since ¢, € (0, 1) the definite

choice is g =0.624911274¢.
Similarly, when j=2 in condition (4.30), we got the relation,

traceH,C,C, “H} =traceH,C, "H{. ........oooviiiiiiiiii i, (4.38)
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We first worked out the product on the left hand side of condition (4.38) using equations
(4.28), (4.31) and (4.34). That is

H,C,C, 'H; =

Bt +4d(t; +15) + (4+4C)(HL, +t) — ¥ty 4t + 4ot -5t + (4+4d)tt, — P tt - 5Lt ...(4.39a)
4t12 +%Ct22 _gtsz + (4+%d)t1t2 _%tzts _%tlts 8t22 +éd(t12 +t32) + (4+%C)(t1tz +t2t3) _%tzts

4t12 +%Ct32 _%tzz + (4+%d)t1t3 _%tzg _%tltZ 4':22 +%Ct32 _%tlz + (4+%d)t2t3 _%tlta _%tltz

3oy,

4t32 +%Ct12 —%tzz +(4+gd)tt -9t —Stt,
45+ 4oty - 5t7 + (4+4d)tt - ot - Bt
8t32 +3d (tl2 +t22) +(4+50) (Lt +t) -t

where:

29 .

C:_(3+13al),d :_(2+14al),t|2:E,|=1,2,3 and tItJ :;_z,i¢j=1,2,3

3a, a,

The trace of this matrix (4.39a) being,

traceH,C,C, *H' = 3_1 [(8+2d)(? +12 +12) + 8+ Ec— L) (L, + tt, +1,t,)]

4%z ... (4.39b)
_ 310+1962, —12260,

8l

Using (4.37b) and (4.39b) in condition (4.38) gave the conditional equation,

310+1962c, —1226cr, 1856¢; + 4488,
81,0} 8lo,, '

From which after using the relation, &, =1-a, narrowed to the quadratic equation;

26320 +5044a, — 2272=0

with solutions 0.3764775227 and -2.292890897. Therefore, «, =0.3764775227

since &, €(0,1).

Thus for m=3 ingredients, we have the A- optimal slope weight vector;



o, =0.6249112749 and , =0.3764775227........oovviieiieieien (4.40)

Therefore, in the second-degree Kronecker model for mixture experiments with three

ingredients, the unique A- optimal slope design for K'@ is
n(a™) = an, +a,n, =0.624911274%, +0.375088725%, .

From equation (3.22), the average-variance criterion, for a nonnegative definite matrix

C of order s is given by;

V(d,) = [%tracecl)_ ........................................................... (4.41)

Presently the average-variance criterion, is obtained for the information matrix of order

m=3 from the relation;

-1
v(g,) = (%traceHocong}
Now, from (4.31), (4.34) and (4.40) we obtained;

| [1856x +4488, 2080, -934s, 208, - 934,
H,C, "H} = 2080, —934c, 1856a, +4488x, 208, —934a,
%2\ 208y, —934a, 208, —934c, 1856, + 4488z,

499176 —3.8686 —3.8686
H,C, 'H, =|-3.8686 49.9176 3.8686
~3.8686 —3.8686 49.9176

The average variance criterion for the design with m=3 ingredients using (4.42) and
(4.43) is given by;

V(4.,) = (49.9176) = 0.020033014s
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For a mixture experiment with four ingredients, we consider the weighted centroid

design with the following fifteen points of support (in table 2) arrived at using the

definition of points (3.2).

Table 2: Support points for the four ingredients centroid design

Design Ingredients

points t1 t t3 ta
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
4 0 0 0 1
5 Yo Y 0 0
6 Yo 0 Y2 0
7 Yo 0 0 Yo
8 0 Yo Yo 0
9 0 Yo 0 Yo
10 0 0 Y Yo
11 3 73 3 0
12 V& Ve 0 Vz
13 VZ 0 Va VZ
14 0 vz ! VZ:
15 Ya Ya Ya Ya

The optimal slope weighted centroid design is

4
n(a) = Zajnj =am, +a,n, +on,+a,m,  with  a=(x,2,,0,00eT, and
=1

a, +a, =1. There are four-elementary centroid designs as directed from (3.3) are;
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0 1/2)(1/2)\(1/2)(0 0 0
0 1/2 (|0 0 1/21]1/2||0
0 ,
1

0
0 0 1/2)10 1/2)\1/2

1) (0
o| |1

"ol |of 12 = lz2flo [luzllo [|12][
o) lo

1/3) (1/3) (1/3) (0 1/4
13|[1/3]o ||1/3 1/4
=130 [usl|ws| 27T s
o Jl13)l1/3)1/3 1/4

The Kronecker model using m=4 ingredients (according to (3.3)) has sixteen
parameters which are not all estimable. We chose the maximal parameter subsystem

(consisting of ten parameters) by using the coefficient (K) matrix for the design. To

construct this matrix, we relied on the unit vectors:

e=1 0 0 0), e=(0 100, e=0010, =00 01,

E,=(L 0 0 0 0 0),E,=(0 1 0 0 0 0),E,=(0 010 0 0,

E,=(0 0010 0), E,=0 00 0 1 0) and

E,=(0 000 0 1)

we have for m=4in (3.7) and (3.8);
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’ ’ ’ ’
Kl = €,6, + 5,6, +€e5e; +e,e, =

O OO0 0000000k, oo o oo
O OO0 O0OO0OkFP OO O0OO0ODOO0OOoOOoOOoOOo
P OO0 OO0 O0OO0OO0ODO0OO0OO0OO0OOoOOo oo

O OO0 OO0 0000000 OoOOoOOo

and

1 ’ 4 4 4
K, = Z[(elz +e)EL + (e +e3)E; + (e, +e,)El, + (65 +e5,)E;;

+ (€, +€4,)EL, + (85, +€45)EL]

o o 0O 0O 0 O
1/4 0 0 O 0 O
O 1/4 0 0 0 O
O 0 1/4 0 0 O
1/4 0 0 O 0 O
o o 0O 0 0 O
O 0 0 1/4 0 O
O o0 0 ©0 1/4 0

“lo 14 0 0o o0 o
O o0 0 1/4 0 O
o o 0O 0O 0 o
o o O O 0 1/4
O 0O 1/4 0 0 O
O 0o 0 O0 1/4 0
o o O O 0 1/4
o o 0O 0O 0 o



which when substituted into (3.6), gave the coefficient matrix,

O O O O OO OO OO oo oo o b

O O O O O O OO OO P oo o o o
O O O OO F OO0 O O o o o o o o

00 0
0 1/4 0
0 0 1/4
00 0
0 1/4 0
00 0
00 0
00 0
0 0 1/4
00 0
00 0
00 0
00 0
00 0
00 0
1 0 0

o O O

1/4

O O O O O O o o

1/4

()

O O O O O o

1/4

1/4

O O O O O o

O O O O O o o

1/4

o O O o o

1/4

O O O O O O o o o o o

1/4

1/4
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The moment matrix for the weighted centroid design 7(«) with four ingredients from

(3.10) is given by;

M(n(a)) =
Hy  Hn
Mz Hp
Hzn  Hon
Haun  Hon
Mz Hyp
My Hy
Han Mo
Mo Hon
Mz Hon
Hon Mo
My Hon
Mo Hun
My Hon
Mo Hon
Hor Hun

Ha
Hann

Ho1y
Ho1y
Houy
Houy
M
Hap
Honn

Hann
Honn
M
Honn
Honn

Hs1
Honn
Hog

Hot
Ho1
M
Hon
Hon
M
Mo
Houn
Hao
Moy
Houn
Hs1

Moy
Honn
Hann
Hog
Hoy

Hann
Hap
M
Hann
Honn
Hou
Hou
Ho
Hou

Hz
Hann
Hap
Hon
Hann
Hann
Hann
M
Hap
Hon

Honn
Hann
M
Honn
Hann

Ho
Hon
Hz
Houn

Hon
Hon
Honn
Hann
M
Hann
Hann
Hon
Hon
Hon
Ha
Ha
Hon
Hon
)
Hz

Mo
Mot

Hot
Mot
M
Hon
Hon
Hun
Hon
Mo
Ha
Moy
Mo

Honn
Hon
Ho1y
Ho1y
M
Houy
Houy
Honn
Honn
Honn

Hp
Hon
Mo
Hp
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(4.46)

4 these moment
0
0
0
0
0
0
0
0

0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O

0
0
0
0
0
0
0
0

0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O

0
0 000 O
0 00 0 O
0 000 O
0 000 O
0 000114 0 0 00O
0 000 O
0 000 O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O
0 00O

1/4 0 0 0 O
0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0 00O 14 0000

0 00O
0 00O
0 00O
0 00O
0 00O

0 00O
0 00O
0 00O
0 00O

0
0
0
0
0

0 0 0 0 1/4)"

Using the definition of the fourth order moments (3.11), for m

matrices for two centroids 77, and 77, are respectively;

M (7,)

and



M(n,) =

T 1o o L1
96 96 96 96
19 Lo
96 96
iO i00
96 96
A
96 96 96 96
A P T
96 96 96 32
OOOOi
96
00000i
96
i0i000
96 96
00000i
96
19 L o ot
96 96 96
o 0 0 o0 o0 o
iOOiOO
96 96
00000i
96
0 0 0 O 0 o0
s R |
96 96 96

o 8lr o & o o

o o

o

Sl o &l o

o 8‘!—‘ o g‘p

o o

o

og‘p og‘p o

Lo lo oo o
96 96 96
0 0 0 0
1 0 0 0 0 O
96
0 0 L 0 0 S
96 96
o 0 0 0 0 O
Lo 0o L o L
96 96 96
L 0 0 0 0 O
96
0 0 O el 0 S
96 96
L 6 0 0 0 O
96
L 0 0 0 0 O
96
R
32 96 96 96
1 1 1 1
- - 0 0 = =
96 96 96 96 (4
E
96 96
0 0 S 0 S
96 96
R 11
96 96 96 96
1111 11

Then, we obtained the left inverse of the coefficient matrix using (4.45) as;

O O O O O O o o o+

O O O O O M O O O O

O O O O N O O o o o
O O O N O O O o o o
O O O O O N OO o o
O O O OO oo o+ o
O O N O O O O o o o
O N O O O O O o o o

O O O O N O O O O o

O O N O O O O o o o

O O O O O o opr o o

N O O O O O O O O o

O O O N O O O O o o

o r O O O

O N O O O O O O o o
N O O O O O O O O O
o

o O o o
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A7)

The design 7,, has the information matrix obtained using (4.46) and (4.48) in (3.18)

as;
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14 0 0 0 000000
0O /4 0 0 00O0O0O0O
0O 0 1/4 0 0000 0O
0O 0 0 1/4 000000
0O 0 0 0 00O0O0GOO
Co=| e, (4.49)
0O 0 0 0 00O0O0O0O
0O 0 0 0 00O0O0GOO
0O 0 0 0 00O0O0GOO
0O 0 0 0 00O0O0GOO
0O 0 0 0 00O0O0GO0O

Then for the design 7, , the information matrix was obtained using (4.47) and (4.48) in

(3.18) as;
1 1111 1 1 45 45
32 96 96 96 24 24 24
11111 4 4 1 14
96 32 96 96 24 24 24
1 11 1 1 4 1 o 1L
96 96 32 96 24 24 24
1111 45 4 1 4 11
96 96 96 32 24 24 24
1 1 1
— — 0 0 = 0 0 o0 o0 O
C.—|24 24 6
2 1 1 1
— — 0 0 = 0 0 o0 O
24 24 6
£l 0 0 £l 0 0 1 0O 0 O
24 24 6
0 11 0O 0 0 O 1 0 0
24 24 6
0 1 0 1 0O 0 0 O 1 0
24 24 6

1 1 1
o 0 — = 0 0 o0 o0 o0 =

24 24 § ) (4.50)
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From equations (4.49) and (4.50) we got the information matrix for the design 7(«)

using the linear function (3.17) that was to be adjusted for slope as;

8ay +a, % % L G X X

0 0 0
32 96 96 96 24 24 24
% Bamta, a4 %G %Gy g % B
96 32 96 96 24 24 24
% @ 8amta, @ g % g & &
96 96 32 96 24 24 24
a, a, a, 8a, +a, 0 0 a, 0 a, a
96 96 96 32 24 24 24
% % 0 0 % 0 0 0 0 0

C, =
% 0 % 0 o 2 o 0 0 o0
24 24 6
a, a, o
% 0 0 % 0 0 =— 0 0 0
24 24 6
0 ] % 0 o 0 0 %2 o o

24 24 6
0 % 0 % 0O 0 0 O % 0
0 0 % % o 0 0o 0 0 %
24 24 6

... (4.51)

From condition (3.21), putting p=-1, we have that () is ¢, —slopeoptimal forK'g

in T if and only if,
traceH,C,C, “H; =traceH,C, "H; forall j {12}

The inverse of the information matrix (4.51) is;



4 0 0 O -1 -1 -1 0 0 0
a, o a, o
0 4 0 0 -1 0 0 -1 -1 0
2] 241 2] a4
0 0 4 0 0 -1 0 -1 0 -1
241 1 21 41
0 0 O 4 0 0 -1 0 -1 -1
o 21 a4 241
1ty g lte, 1 1 L 1 0
clo|a @ 2a,ax, 4a, 4a, 4oy 4oy
Pt g 2ty 1 12mte, 1 L 0 L
o o 4oy 204, 4oy 4oy 4oy
1y o 2L L Lare, 1 L
o o 4oy 4oy 2e40, 4oy 4oy
o 1 o L L o (lewte, 1 L
o o 4oy 4oy 2e,2, 4o, 4oy
o Lot 1L o 1 1 iy 1
o o 4o, 4oy 4oy 2oy, oy ... ...(4.53)
o o -l o, L 1 1 1 1+
o o 4oy 4oy 4oy 4o, 2e0,

which on squaring yields,

a bbb c c cddd
b ab b c d d c c d
b b ab d c dc dc
b b baddocdcc
= c cdd e f f f f ¢
® lcdcd f e f f g f
c ddoc f f e g f f
d ¢ccd f f g e f f
d ¢cdc f g f f e f
d deecg f 1T 1 T € (4.54)
where:
2
_ - 2
=1—2,b=i2,C: (60512+5042)’d= 12’e=65a1+2021+5’
a; a; o a, 20 20, a,
1::24041+11042 and g = L

8ca/a, 4o
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The slope matrix for the design with four ingredients using equation (3.12) is

2 t, t, t, t, 0 0 O t, 0 O tt 0 0 O
o0 L 00 L2 & 0L 0 00t 0 0l

0O 0t 00 Ot Ot t 2t 0 Ot O

0 00t 0 0O Ot 00 O t t t t 2t

2, 0 0 0 it it i, 0 0 O
HZOZtZOO%thO%g%QO
10 0 2, 0 0 it 0 it, 0 it
0 0 0 2 0 0 3t 0 3L L) (4.56)
when j=1 in (4.52) results in the relation,
traceH,C,C, “H{ =traceH,Co tHY . oo (4.57)

We have from equations (4.49), (4.54) and (4.56);
76t + At +tt, +tt) 4t + A - L(tt +tt,
1[4t + AL -1 (tt +tt,) 76 + A(tt, + 4t + L,
4

att, + AL - L(tt, +tt,)
4t + AL - L(tt, +t,t,)

)
H0C1C072H(; = ) 2
)76t + AL + Gt +tt,)
)

Aol | att, + A -1t +1t,) At + A -1 (tt +tt (4.58a)
AL, + AL -1t +tL,) At + A Lt +tt) At £ A -1t ) T '
att, + At - L(tt, +tt,)
4L, + AL - Lt + )
4, + AL -1t + L)
76t7 + A(tt, +t.t, +tt,)
where:
— (6, +5a 103 . 7 ..
A:M, t’==—,i=1234and tt,; = — i= j=1234
a, 48 144
The trace of (4.58a) is;
traceH,C,.C, ’H, = 4—12 76t +t7 +2 +10) - M(tltz L+t + L)
o 2
74430, - 4622, (4.58Db)

480’ a,
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Also, from equations (4.53) and (4.56);

—16t7 + 2 (t) +1 +17) + 2(tt, +tt, +tt,) — 2 (Gt + 4t +tt,)
H.C,H: = -1 tzi +t€ —i(taz +t£ G ) 2t
o o+t -5t + b+ttt Ll ) + St
ty +t7 -2 (67 +1; +t, 4+t + ) + 2t
2+t - (7 41+ttt G ) 2t
—16t) +2 (7 +1) +17) + 2(tt, + bty + 1) — I (bt +tt, +tt,)
2+t ——(t +2 bt 4+ Lt +1t,) + 34t
ty+t; -2 (17 +1 +t, 4, + 4t +tE) + 24,

7+t - () +1) L+, ) 2t
8+t — L (17 +1 +tt, ) + 2t

-16t? +f(t HU2 )+ 2(tL, + ot it 2~ (G +tt, +tt,)
t2+t ——(t G, ) 24,

7+t -1 () +1 +tt, U+t )+ 2t

2+t — L (7 +8 +th, i, ) 2L,

t§ +tf _i (tlz +t22 Hht it F LA t) H A, | (4.59a)
_16tf + % (t12 +t22 +t32) + 2(t1t4 +t, +'[3t4) _% (t1t2 +t +t2'[3)

where:

a=—W2nrar) o 108, )5 s aandtt =T ixj=1234
28 144’

2a,
Trace of (4.59a) is;

traceH,C, "Hy = “S[(-16+ 2a)(2 +2 +2 +12) + B (8, + 48, + Lt + 4t + 4, + )]
a .. (4.59)

1

_ 1854¢, +6169%,
48,

Using (4.58b) and (4.59b) in (4.47) gave the equality relation

74430, —462c; 1854, +6169%,

48ala, 48a,ax,
that after substituting for &, =1— ¢ led to the quadratic equation,

43150 —140740, +7443=0
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with solutions 0.66403958 and 2.597605842. But since ¢ € (0, 1), the right choice is

o, =0.664039581.

When j=2 in (4.52), we obtained the relation,

traceH,C,C, “H{ =traceH,C, " Hy. ..ooovveieeiiiic, (4.60)

0

To work out the trace on the left hand side of this condition, we first multiplied

(4.50), (4.53) and (4.56), to get;

1282 +3d (2 +82 +2) + (A +a)t (¢, +t, +t,) - L (Lt +L,t, +Lt,)
HC.CH = -1 4tl(t1+t2)+2t2(23t2—t3—t4)+%t1(dt2—t3—t4)—%t3(t2+t3)—%t4(t2+'[4)
O Agna, | 4t (¢ + 1) + 2t (2at, —t, —t,) + 3t (dt, —t, —t,) — 1, (t, +t,) - 1t (t; +1,)
at (L, +t,)+ 2t (2at, —t, —t;) + 1, (dt, —t, —t;) —+t,(t, +t,) -+t (t; +,)
4 (t, +1) + 2 (2at, -ty —t,) + 34, (dt —t —t,) -3, (t +t) -4, (4 +1,)
122 +32d (82 +82 +t2) + (4+a)t, (t, +t, +t,) - L (4t +tt, +tt,)
4tz(t2+t3)+2t3(2at3_tl_t4)+%t2(dt3_t1_t4)_%t1(t1+t3)_%t4(t3+t4)
4t2(t2+t4)+2t4(2at4—tl—t3)+%t2(dt4—tl—ts)—%tl(t1+t4)—%t3(t3+t4)
4t3(t3+t1)+2t1(23t1*tz*t4)+%t3(dt1*tz*tA)*%tz(tl+tz)*%t4(t1+t4)
At (t +1) + 24, (2at, -t —t) + 3t (dt, -t —t,) -t (4 +t) -4t (t, +t,)
122 +3d (6 +12 +t2) +(A+a)t, (L, +t, +1,) - L (tL, +tt, +tt,)
4t3(t3+t4)+2t4(2at4_tl_t2)+%t3(dt4_H_tz)_%g(tl'kh)_%tz(tz+t4)
4t4(t4+t1)+2t1(zat1_tz_t3)+%t4(dt1_t2_ts)_%tz(t1+t2)_%t3(t1+t3)
4t4(t4+tz)+2tz(2atz_ti_t3)+%t4(dt2_tl_ts)_%t1(t1+t2)_%t3(t2+t3)
4t4(t4+ts)+2t3(zat3_tl_tz)+%t4(dt3_H_tz)_%g(t1+t3)_%t2(t2+t3)
122 +1d (t7 +82 +t2) + (4+a)t, (t, +t, +t,) -1 (tL, + Lt +L,t,)

where:

_ 1 -2(1 1
ao—Ga+D -2 +1) tizz%g,izl,z,uand

a, a, '

t= s j=1234
144

The trace of matrix (4.61a) being,
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-1
s [A2+2d) (2 +12 +12 +12) + (7 + 2a) (41, + b, + 48, +4,8, + b, +tt,)] (461b)
_ 463+416%, ~3011a,

960,05

traceH,C,C, *H' =

Using (4.51b) and (4.61b) in (4.60) gave,

1854a, +6169%x, 463+4169%, —301lx,
48a,a, 96a,a}

’

That after substituting for &, =1—¢, led to the quadratic equation;
451507 +54440, —2316=0

with solutions 0.335960419 and -1.597605842. But since «, € (0, 1) the only

acceptable choice is o, =0.335960418.
Thus for m=4 ingredients, we have the A- optimal slope weight vector;
o, =0.664039581and a, =0.335960416................. (4.62)

Therefore, in the second-degree Kronecker model for mixture experiments with four

ingredients, the unique A-optimal slope design for K'@is
n(a™) = ayn, + a,n, =0.66403958%, +0.335960419;, .

From equation (3.22), the average-variance criterion, for a nonnegative definite matrix

C of order s is given by;

V() = Gtraceclj ........................................................... (4.63)

At present the average-variance criterion, is obtained for the information matrices of

order m=4 ingredients from the relation;
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1 2, )
v(g) = (z”aceHOCo lHO) ............................................. (4.64)

Now, the product of (4.53) and (4.56) together with the use of the weight vector (4.62)

gave;

3708 +123%, 308a, 1468z, 308a, 1468z, 308a, —1468a,
He oty o 1 | 3081468, 8708 +1233, 308 -1468, 308 -1468
070 % 3480y, | 308, 1468z, 308a, —1468x, 3708a, +1233x, 308a, —14682,
308¢, ~1468z, 308a,~1468z, 308¢,—1468z, 3708z, +1233,

771282 -3.3696 —3.3696 —3.3696

Loy _| 33696 771282 -3.3696 -3.3696 .65
° 7 °71-33696 -3.3696 77.1282 -33696| T '

—3.3696 —3.3696 —3.3696 77.1282

The average variance criterion for the design with m=4 ingredients from (4.65) and
(4.64) is given by

v(g,) = (77.1282)" =0.012965426=
4.1.1.4 A- Optimal Slope Weighted Centroid Design with m Ingredients
Now, following are relations that can be used to get the A- optimal slope weight vector
and the optimal value for a design with m> 2 ingredients for the A-criterion. This
development was motivated by the realization that there is a trend in the numerical
values for the weight vector and the A-slope optimality values linking the values to the

number of ingredients.

The information matrices for weighted centroid designs are contained in the quadratic

subspace, C e sym(s, H) and by (3.25) can be uniquely represented in the form

al, +bU, cV,+dVv,
C=lcv,+dv, el
)
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with coefficients a,---,g € R, Klein (2004). The terms containing V2, W> and W3 only

occur for m>3 and m >4 respectively.

The matrix (4.66) according to (3.25a) can be partitioned according to the block

structure,

with C,, e sym(m),C,, € %[2] and C,, € sym&r;]j.

For j=1,2, ..., m, from (3.25c) we obtain

C. :[Cm Céll] (4.68)
J
Co; Cuj

with blocks obtained using (3.25d) as follows:

)] for j=1,

Cy, = % l.,, C21,1=0 and C2,1=0.

i) for j=2;
1 1 1 m
Ch,=—I_+ v, C,,=——V,andC,,, =——1,_.,
11,2 8m m 8(m—1) 2 21,2 8(m—1) 1 22,2 8(m—1) (r;]

Thus we have
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and

o' ann % "

m m(m — m-—

C, = L o Y [ (4.70)
8(m-1) 8(m-1) (2

From (4.69) and (4.70) in equation (3.17) which we obtained the information matrix to

be adjusted for slope as,

8a, + a, |+ a, U a, V!
8m " 8m(m-1) ° 8m-1) °

C, = @ e (4.71)
g(m-1) * 8(m—1) [;"j

An inverse of a matrix in sym(s,H) can be computed by solving a system of linear

equations. By the same approach we obtained the blocks of the inverse matrix

partitioned as,

m I __1Vl'
cl_| A * 472
0 —_ _1 2[4(m_1)a1 +a2] 1 ................................. ( . )
Y} I +——W,
a, ma,a, ( 2] mey

The square of this inverse matrix was algebraically obtained as;

2 — —
m’ +m 1|m+%U2 _(B(m Ve, +2m(m+1)a2)vl,_ 2 v
al 0!1 ma1 az mal (4 73)
. 2[32(m-1)*a? +16(£n;1)2a1a2 +m(m+1)a’] |
0 _[8(m—1)a1+m(m+l)az}/ 2, m’e/a; (5)
mafa, bomef t 16(m-1)a, +(M* +m+2)a, 4
+ 2.2 W2+ 2 2W3
Mmoo, ma,

From the Kronecker second order regression function we got the slope matrix D using

(3.12) as
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!

o_[of'® oM o'W
et Tat, T oat

m

This slope matrix was then adjusted using (3.13) to get the adjusted slope matrix

H, =DK = (Ztilm gt,.vl'j ........................... (4.75)
m

m+1
Thisisan m x[ 5 j matrix with K being the coefficient matrix as defined in (3.6)

Now a design that is A-slope optimal if and only if it satisfies condition (3.21). That
is, a design is A-slope optimal if,
traceH,C,C, “H; =traceH,C,"H; for all j e d(a)

For j=1,

we employed the matrices (4.69), (4.73) and (4.75) to get the product:

2 —_— —_— —_—
H001002H5={4(m tm-1)., 4m-D[B(m 1)ozl+m(m+1)ogz]titj}Im+

ma; : mela, 4.772)

2 i

2 o Am-D[Ba +(m+4)a;]
ma; m’aa,

tt; }U )
The trace of (4.77a) is;

4(m? +m-1) 2 4m-DB(m-Da, + m(m +D)a, ] tt

3 .2
Mo, Mo a,

trace(H,C,C, °H") = m[ }
.(A77b)

_ m{4(m2 +m=1) , _ 4m =DM e, + m(m + Ya] B}
Moy Mo, a,

W m-1 =2(m-2
where A=tf=2( _ j L - and B:titj:Z( _ j !

=\ 1 )@+) =0 J([i+2)?

From the matrices (4.72) and (4.75) we got the product;
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a, ma,

Hc_lH,_Fmt _EM=D A -DBM =Yy + ma] ,}lm+
m*a,a,

........ (4.78a)
-8 32(m - l)oz1 +4(3m — 4)0:2
tt, + t; U,
mea, m? o,
The trace of (4.78a) is;
trace(HOCO‘lH(;):m{4_mti2_8(m‘1) (o, AM=DIB-Das +ma] . }
“o e e (4.78b)

B 4[8(m 1)? a1+m(m +m-— 1)a2] _8(m-1)
- ma,a, me,

m-1 m—2 m_2 1
|—o( j 1 and B:titj:i;( i )—(i+2)2

after employing the ordinates of the support points in the m-ingredient mixture design.

Using (4.77b) and (4.78b) in condition (4.76) we obtained the relation,

4[8(m 1)° a1+m(m +m- 1)a2] _8(m-1) B
mea, mey

4(m +m- 1) _A(m-1)[8(m - 1)a1+m(m+l)a2]
ma; m'ela,

That after substituting for &, =1—¢; led to the quadratic equation;

[(-m* +7m? —15m + 8) A+ 2m*(m —1)Ble; +[(m* + 2m? —1) A—m(3m* —10m +15)B]e,
—(M*+m-DA+m(m*-1)B=0

The only acceptable solution being;

 —[(m* +2m? —1) A— m(3m? —10m +15)B] + /gA? + hB? + gAB
L 2[(-m* + 7m? —15m + 8) A+ 2m?(m —1)B]
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where:
g =m®—4m° +34m* —32m* —92m? + 92m - 31,
h=m?*(-8m* +8m® +11m? —18m +15)
g =2m(-m°® +10m° —33m* + 50m* —37m* —36m + 31).

Similarly, for j=2, we worked out the product of the matrices (4.70), (4.73) and (4.75)

to get;

4(m-1) 2. 4m-1)*(Ba, + Mar,)
Mmoo, me,0

16(m—1)2af+16(m—1)2a1a2+m(m+1)(m—2)a22tz |
7] 3.2 2

2m*efa; ‘} "...(4.79a)

16(m-1)*a; —16(m-1)*a,cx, + m(m +1)(3m - 4) ez U
2m*(m-Yale} ’

tt +

HOCZCO’ZH(') = {_

; i+

-4, 48Mm-Ya, - (m*-3m+4)a,
+ to+ TS,
ma,a, mo,a,

where;

The trace of (4.79a) is;

—4m-1),., 4m -1)*(8a, +mar,)

: T3 tt i+
2 ma,a, ma,a,
trace(H,C,C, "Hy)=m ) 5 ) )
16(m-1)°a +16(m-1)* ., + m(M+1)(M-2)cx; g ..(4.79b)
2m’alal !

- 16(m-1)° a2 —8(m-1)(m* — 2m + 2)ar.t, + m(M +1)(M - 2) A 4(m-1)°(8e, + ma,)
+

3.2 2

32 B
2mia; a, ma,a,

Using (4.78b) and (4.79b) in condition (4.76) we obtained the equivalence relation;
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N 4(m —1)2(805l +Mma,) Bl

3.2 2 A

o 16(m—1)*c —8(m—-1)(M* — 2m + 2)ar, r, + M(M +1)(M — 2)ar?
2mie; o, m°e,a;

m{4(m —~1[8(m —1)2?1 +m(m® +m-1)a,] A 8(m-1) B}
m°a,c, ma,

This alongside the conditional relation ¢ =1—«, gave the equation;
[(m* +63m? +127m —64)A—16m*(m —1)B]ea; +

[(-m*+9m® +118m* — 257m +128) A +8(m —1)(m* +9m — 8) Ble’ +
[8(m —1)(m? —14m +14) A+ 8(m — 1) (m — 16)Ba, +16(m —1)? A+ 64(m —1)°B =0

with a feasible solution;

_ —(m-2)(m’+m*-15m +15) A+ m(7m* —14m +15)B —\/gA2 +hB? + gAB
? 2[(-m* + 7m? —=15m + 8) A+ 2m?*(m —1)B]

where:

g =m®—4m° +34m* —32m°® —92m* + 92m - 31,
h=m?(-8m* +8m® +11m* —18m +15)

q=2m(-m® +10m° —33m* + 50m® —37m* —36m + 31).

Thus for a design with m>2 ingredients, we have the A- optimal slope weight vector;

. —[(m* + 2m® —1) A— m(3m’ —10m +15)B] + /gA” + hB? + GAB
b 2[(—m* + 7m? —15m + 8) A+ 2m*(m —1) B]

and

= —(m=1)(m*+m? —15m +15) A+ m(7m? —14m +15)B—\/gA2 +hB? + gAB (4.80)
2 2[(-m* + 7m? —15m + 8) A+ 2m*(m —1)B]
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Therefore, in the second-degree Kronecker model for mixture experiments with m> 2
ingredients, the unique A- optimal slope design for K'0 is 7(a™) = ayn, + a1, , with

the weight vector as provided for in (4.80).

From equation (3.22), the average-variance criterion, for a nonnegative definite matrix

C of order s is given by;

V(d,) = (%traceclj_ ........................................................... (4.81)

At present the average-variance criterion, is obtained for the information matrices of

order s=m from the relation;

_ 1 Ly B
v(9.) = (E”aceHoCo HOJ ............................................. (4.82)
Using the trace value from (4.78) we got;
Mo,
v(g,) = R S el JOUUUUUNUNNRRR (4.80a)

A[8(m —1)2ct, + m(M® + m - e, ]A—8m* (M —L)a,B

4.1.2 D- Optimal Slope Weighted Centroid Design

We then derived optimal slope weighted centroid designs for the determinant criterion,
¢, . We started this section by adapting equation (3.21). This equation provides
necessary and sufficient condition for the derivation of the D- optimal slope designs for
a specific number of ingredients. We got the obligatory relation by putting p=0 in
equation (3.21), to get the condition that a design is D-slope optimal for K'@ if and

only if;
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=traceH,H, forall jed(a)

traceH,C,C, 'H;
0TI % < traceH,H; otherwise

where, H,is an adjusted slope matrix according to (3.13).

We then proceeded to demonstrating the D- optimal slope designs for specific number

of ingredients.

4.1.2.1 D- Optimal Slope Weighted Centroid Design with Two Ingredients
To obtain the D- optimal slope weighted centroid design with two ingredients, we

proceeded by first assembling the necessary matrices as follows:

The information matrix to be adjusted for slope and optimized for the D-criterion

from (4.11) is;

[8a, + a, a, a,
16 16 8
C,=| % Bt & (4.84)
16 16 8
% L X
. 8 8 4

The information matrices employed for the two centroids 7, and 7, are provided in

(4.6) and (4.7). These are respectively;

1/2 0 0
C,=| 0 1/2 0
0 0 0

and

1/16 1/16 2/16
C,=|1/16 1/16 2/16
2/16 2/16 4/16
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The inverse of the information matrix for the design with two ingredients is provided

in (4.7) as,
2 4 1
a, a,
C,l=| 0 2 e T (4.87)
o a,
—_1 —_1 4o +a,
a o a,a,

We also needed to use the adjusted slope matrix as is from (4.13). That is;

2t 0 t
H,=DK=| ! 2 (4.88)
0 2t, t

From condition (3.21), we have that a weighted centroid design 7n(«) Iis

¢, —slopeoptimal for K'@ in T if and only if
traceH,C,C, 'Hy=traceH,H; forall j € 0(a) .....oeoovevriieiannene, (4.89)

For j e{1,2}we begin with the case j=1. Using the information matrices (4.85), (4.87)

and (4.88), We calculated the following products:

2 2
) HCC, Hy = L [Bu-2t 260 1 (19 -5

The trace of (4.90a) is,
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traceH,C,C *H/ = 21—9

e e (4.90b)

i) HoH: = M+ttt _1(25 1 |
Sl tt,  4t2+t?) 41 25

The trace of (4.91a) is;

traceH,H, = % ..................................................................... (4.91b)

Using (4.90b) and (4.91b) in the relation (4.89) we got,

19
a1:2—5 .

Similarly, when j=2, first a product of the matrices (4.86), (4.87) and (4.88) is;

B 2t t2+tt 3 3
HoC,Co tHy = |2l Lt ) L[Sy (4.92a)
o, \+tt, t2+tt, ) 20,(3 3
The trace of (4.92a) is;
1, 3
traceH C,C, Hy=— i (4.92b)
a,

Second, using (4.91b) and (4.92b) in (4.89) we got,

oy, =—.
2 25

Hence, the D- optimal slope weight vector is;

a, = 2—2 and «a, = % ......................................................... (4.93)
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Therefore in the second-degree Kronecker model for mixture experiments with two

ingredients, the unique D- optimal slope design for K'@ s

19 6
(D) = + - +— .
n(a™) = aym, + aym, o5 Ui o5 7,

To obtain the optimal value v(¢,), first we adjusted the information matrix (4.84) for

slope by pre- and post-multiplying by the adjusted slope matrix (4.88). This led to the

matrix;
Hewn =L 8(ay, + a, )t + 2att, + o tl a, (t? +2tt, +17)
0Ty a, (12 +2tt, +12) 8(a, + )t + 2a,t,t, + oyt
_ 1{10e, +3a, 3a, _1(208 18) . (4.94)
4l 3q, 10a, +3a,) 100( 18 208

after employing the ordinates of the support points where t? = % and tt, = % and the

values for o, and o, from (4.93).

From equation (3.22), the determinant criterion, for a nonnegative definite matrix C of

order s is given by;

V() = (traceC)é

At present the determinant criterion, is obtained for the information matrix of order

m=2 from the relation;

1

v(g,) = (traceHOCO’lH{)F

The optimum slope value for the determinant criterion was then obtained using (4.94)

and (4.96) as

42940) =2.072196902.

Vigh) = (10000
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4.1.2.2 D- Optimal Slope Weighted Centroid Design with Three Ingredients
To derive the D- optimal slope design with three ingredients, we begun be assembling

the necessary matrices. These are as outlined:

The information matrix to be adjusted for slope and optimized for the D-criterion is

from (4.13);
Bonta, @ m 4, @
24 48 48 16 16
a, 8a, + , a, a, 0 a,
48 24 48 16 16
% e T
_| 48 48 24 16 16
Co= a a 3a
“Z2 2 0 =2 0 0
16 16 16
a, a, 3a,
—= 0 —= 0 — 0 | 4.97
16 16 16 ( )
0 o L T
16 16 16

The information matrices employed for the two centroids 7, and 77, are available

from (4.27) and (4.28) respectively as:

/3 0 0 0 0 O
0 13 0 0 0 O
0 0 13 0 0 O
Co=| T, (4.98)
0O 0 0 0 0 O
O 0 0 0 0 O
O 0 0 0 0 O

and



1/24
1/48
1/48
1/16
1/16

1/48
1/24
1/48
1/16
0
1/16

1/48
1/48
1/24
0
1/16
1/16

1/16
1/16
0

3/16 O 0

0
0

84

1/16 0
0 1/16
1/16 1/16

3/16 0 e (4.99)
0 3/16

The inverse of the information matrix for the design with three ingredients is from

(4.31),

We also needed

SR, :
(o4 o,
- 0 -1
o, a,
0 -1 -1
o, a,
28 +a) 1 T s (4.100)
36llCXZ 3“1 30{1
1 2yra) L
30(1 3a1a2 30{1
1 1 2Baytay)
3al 3&1 3a10( 2

the adjusted slope matrix for the Kronecker model with three

ingredients as is from (4.34). That is;

0 0
2t, 0
2t

................................................. (4.101)

From condition (3.21), we have that a weighted centroid design 7n(«) is

@, —slopeoptimal for K'@ in T if and only if

traceH,C,C, "Hy=traceH,Hy forall j€d(a) .......ccooveevviiiiiiann, (4.102)

For j=1, the products of the matrices (4.98), (4.100) and (4.101):
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1 36tl2 - 4(t1t2 + t1t3) t12 t12
H,C.C™H, = o t2 36t; — 4(tt, +tt,) t2 ...(4.103a)
% t2 t? 36t — 4(tt, +t,t,)
where;
29 . 13

(=g i=123and tt, = =, i+ j=123

The trace of (4.103a) is;

traceH,C,C"H; = gi[36(t12 F12+12) -8t + b, + )] = ;ﬂ ............. (4.103b)

1 a,

and from (4.101) we got the product,

36t + 4(t2 +1t7) att, att,
HH; = 9 att, 36t7 + 4(t7 +12) Aty | (4.104a)
At t, att, 36t7 + 4(t7 +t2)

where;

t2 =i_:,i =1,2,3and tt, =£, i#)=123

the trace of (4.104a) is;

traceH,H; = %(tf 2y =8 (4.104b)

27

Using the (4.103b) and (4.104b) in the condition (4.102) we have «, = % :

Similarly, when j=2 and using (4.99), (4.100) and (4.101) we got a matrix product,
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. 2+t +tt, + it t2+tt, t2 +tt,
H,C,C, H; = o t2 +t, 2 +t2 4+t + Lt 2+, ...(4.105a)
2 t? +tt, t? +,t, t2 + 2+t + o,

where;

t2 :i_:,i =1,2,3and tt; zg, i#j=123

The trace of the matrix product (4.105a) was elementary obtained as;

traceH,C,C*H/ = gi(tf 242, L L) = 217i2 ....(4.105D)

2 a,

Using the (4.104b) and (4.105b) in the condition (4.102) we have , = % |

Hence, the D-optimal slope weight vector for the weighted centroid design with three

ingredients is;

A =—— AN0 @) = = (4.100)

Therefore, in the second-degree Kronecker model for mixture experiments with three

ingredients, the unique D- optimal slope design for K'@ is

248 71
319771 -

(D)
nao =oqn t+ta,n, =
( ) 171 2012 3]9

To obtain the optimal value Vv(g,), first we adjusted the information matrix (4.97) for

slope by pre- and post-multiplying by the adjusted slope matrix (4.101). This led to the

matrix;
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8(8a, + ay)t” +8a, (Lt +tt,)

4o, (] +2t, +17) A, (2 + 2t +12)
o, (i +10) o+ 2+ S+ 2t + 8
1 8(8at, + o, )2 +8ar, (L1, +1,t,)
HCoHo=—| 4o, (tf + 2, +1)) 4oty (t] + 2t +17)
070048 2 re - +4(12(t12+t32) 232 2373 (4107)
8(8a, + )t +8ar, (tt; +,t
da, (1] + 248, +13) Aoy (12 + 24,8, +12) (8at + o)t 20‘2(213 )
+ha,(t; +1,)
. 4232, +71a,) 1420, 1420,
=13 142q, 42320, + 11ar,) 142q,
142a, 1420, 4(2320, + 71z,

after employing the ordinates of the support points.
where;

t2 :%,i =1,2,3and t, :;—2, i#j=123

From equation (3.22), the determinant criterion, for a nonnegative definite matrix C of

order s is given by;

1
s

V() = (traCeC)s ...vvvvveeiieie e, (4.108)

At present the determinant criterion, is obtained for the information matrix of order

m=3 from the equation;

1

V) =lraceHC, W p (4.109)

The optimum slope value for the determinant criterion was then obtained using (4.107)
and (4.109) while taking note the numerical values for «,and «,, (from 4.106). The

determinant criterion was obtained as;

1
v(¢4,) =5.964019334 =1.81348101¢&=
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4.1.2.3 D- Optimal Slope Weighted Centroid Design with Four Ingredients
The task here was to derive the D- optimal slope design for a mixture experiment with
four ingredients. The information matrix to be adjusted for slope and optimized for the

D-criterion is from (4.33);

8oy v, % e
32 96 96 96 24 24 24
a, 8a, + a, a, a, % g g % %
96 32 96 96 24 24 24
a a4 8auta, o 0 %2 o % g %
96 96 32 96 24 24 24
a % % 8auta, 4 g X4 oy % X
96 96 96 32 24 24 24
% % 0 0 % 0 0 0 0
Co= a, a, a,
% 0 e 0 2 090 0 0 o0
24 24 6
% 0 0 % 9 o Z 0 0
24 24 6
0 % % 0 o o o & 0
24 24 6
0 % 0 ‘;‘Z 0 0 0 "g
0 0 % %2 0 0 0 0 0 2|.(4110)
24 24 6

The information matrices employed for the two centroids 7, and 77, are respectively

from (4.49) and (4.50);

/4 0 0 0 000000
0O 14 0 0 00O0O0O0O
0O 0 1/4 0 000000
0O 0 0O 14000000
0O 0 0 0 00O0O0O0O
Co=| (4.111)
O 0 0 0 00O0O0O0O
0O 0 0 0 00O0O0O0O
0O 0 0 0 00O0O0O0O
O 0 0 0 00O0O0O0O
0O 0 0 0 00O0O0O0O

and



C)l=

(o]
(o]

11
96 24
11
96 24
Lo
96
Lo
32
o 1
6
0 0
Lo
24
0 0
Lo
24
Lo
24

o R|r o R+

o ol O

Lo
24
o L
24
o L
24
Lo
0
0 0
Lo
6
o 1
6
0 0
0 0

al
1

da
1

da

120, + a,

2040,

0

0 0
Lo
24
0o L
24
11
24 24
0 0
0 0
0 0
0 0
1o
6
o 1
6

0 0
-1 -1
o o
-1 0
o
0 -1
al
1 1
4o, 4a,
1 0
4a,
0 1
4a,
120, + , i
2040, 4o,
1 120, + a2,
4o, 2040,
1 1
4a, 4a,

day
1

da,
1

da,

120, + a,
20,0,

89

...(4.113)



90

We also utilized the adjusted slope matrix as is from (4.56). That is;

2 0 0 0 it, i, it, 0 0 O
0 2, 0 0 i, 0 0 3t t, 0

H, = 2 o AN S (4.114)
0 0 2, 0 0 it 0 it, 0 it
0 0 0 2, 0 0 it 0 it it

From condition (3.21), we have that a weighted centroid design 7(«) is

¢, —slopeoptimal for K'@ in T if and only if
traceH,C,C, "Hg=traceH;H; for all j € 0(ar) ....covvevureviiiaiieiiene. (4.115)

For the case j=1, we have the following requisite products using (4.111), (4.113) and

(4.114)
16t12_t1(t2+t3+t3) _tlz _t12 _tlz
Hee o L -t 16t; ~t,(t +1, +1,) -t -t .(4.116a)
) —t? -t 162 —t,(t, +1t, +t,) -t
-t -t -t 1617 -t (t, +t, +1)

The trace of (4.116a) is;

traceH,C,C, "H! = i [L6(t2 +12 +12 +82) + 2(tt, + b, +t, + 4t + 48, +1t,)]
1 .. (4.116Db)
1571

- 48a,

where;

t2 =%’,i —1.23.4and tt, =0, i+ j=12,34

and
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16t7 +t2 +t2 +17) tt, tt, tt,
HoH <L t, 16t; +1; +1; +1;) bt 5 P (4.117a)
tt, tt, 166 +t7 +t7 +17) tt,
tt, tt, tt, 16t; +t +t7 +t7)

The trace of (4.117a) is;

traceH,H, =¥(tf +12 12 +t7) STag e (4.1170)

where;

t? =%3’,i =1,2,3,4and tt, =%, i#]=1234

Using the (4.116b) and (4.117b) in the relation (4.115) we have, @, = ~2'+ .

1957
Similarly, when j=2 and using (4.112), (4.113) and (4.114), we have,

HoczcoilH(’J =
2+ +7 4+t (t, +t,+1,) 2 +1t, t+tt, t+tt, .(4.118a)
1 2 +1t, 1+ 4+ 4+t +t+t,) £+t 2+t
la, t+tt, 2+t 2+ +t2 4t +t, +t,) 4t
t2+tt, t2+tt, 7+t U+ 4+t 4, 41, +1,)

The trace of this matrix product (4.118a) was elementary obtained as;

traceH,C,C, *H, = i[s(tf 22 12)  2(t, bt + G, bt Lt + = ;fj ...(4.118D)
2 2

where;

t2 :%”,i —1.23,4and 8, =0, i # j=12,34

386

Using the (4.117b) and (4.118b) in the relation (4.115) we got «, = 157"
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Hence, the D- optimal slope weight vector is;

1571

386
a,==——=an =
1957

L 4119
%2~ 1957 (4.119)

Therefore, in the second-degree Kronecker model for mixture experiments with four

ingredients, the unique D-optimal slope design for K@ is,

1571 386

(D) = + = — + — .
n(a'™) =am +a,n, 1957771 1957772

To obtain the optimal value v(4,), first we adjusted the information matrix (4.110) for

slope by pre- and post-multiplying by the adjusted slope matrix (4.114). This led to the

matrix;
16(8a, + a,)t}
+8a, (L, +tt +t,)  da,(tf + 2t +1)) Ao, (P + 24t +12) Aoyt + 24, +t7)
+Aa, (8 +17 +17)
16(8e, + a,)t;
ba,(t2 +2t, +13)  +8a,(tt, +tt, +t,t,)  da,(t + 2Lt +t7)  da,(tF +2t,t, +t))
, 1 +ha, (7 +t2 +t7)
H,C,Hy=— 2
96 16(8c, + a,)t,
ba,(t2 + 2t +12)  da, (2 + 26t +10)  +8a,(tt, +tt +tt,) Ay (L +2tt, +t7)
+ha, (87 +t2 +17)
16(8e, + ay)t;
ba,(t2 +2t, +12)  do, (8 +26t, +17)  da,(t +2tt, +t7)  +8a,(tt, +t,t, +tt,)
+ha, (7 +t +12)
3(32960, +875a,) 772a, 772a, 772a,
1 172 3(3296c, +875a,) 7121 20,  |vce (4.120)
_ 2 1 2 2 2
3456 7720, 7720, 3(3296¢, +875a,) 7720,
772, 772, 7720, 3(3296a, +875a,)

after employing the ordinates of the support points, where;

103 .

t’ =g 1 =Lh234and tt, =%, i#j=1234
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From equation (3.22), the determinant criterion, for a nonnegative definite matrix C of

order s is given by;

1
s

V() = (EraCEC)s ...vvvvvveiiiiiiiii e, (4.121)

At present the determinant criterion, is obtained for the information matrix of order

m=4 from the relation;

1

R T (4.122)
The optimum slope value for the determinant criterion was then obtained using (4.120)

, (4.122) and the numerical values for ¢, and «, (from (4.119)). The slope optimal

value for the determinant criterion was obtained as;

1
V(¢,) = (35.7622)s = 2.4454=

4.1.2.4 D- Optimal Slope Weighted Centroid Design with m Ingredients
This section presents the general expressions that can be used to derive the D- optimal
slope weight vector and the optimal value for the D-criterion for a mixture experiment

with at least two ingredients.

The information matrices of the weighted centroid designs involved in this study belong
to the quadratic subspace,C e sym(s, H) . According to (3.25), they can be uniquely
represented in the form

al_+bU, oV, +dV,
C=lcv,+dv, el . +
()

with coefficients a,---, g € R, Klein (2004). The terms containing V2, W» and W3 only

occur for m>3 and m >4 respectively.
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The matrix (4.124) according to (3.25a) can be partitioned according to the block

structure,

c, C,
cz[ " 21} ................................................................. (4.125)

with C,, e sym(m),C,, € E}%[Z}m and C,, e sym((r;]j.

For j=1,2, ..., m, from (3.25¢) we obtain

C,. Ci.
Com| e (4.126)
C21,j sz,j

with blocks obtained using (3.25d) as follows:

)] for j=1;

Cy, = % I, C211=0 and C221=0.

i) for j=2;
Ciz :ilm +;U2' Coz :;Vl and C,,, :L| m\’
©o8m T 8(m-1) © 8(m-1) * " gm-1) (7)

Thus we have

1
C, = [_ n 0} .................................................................. (4.127)

and
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LTI S Ly,
C. — 8m 8m(m-1) 8(m-1) .
2 1y Mo ([ :
g(m-1) gm-1) | 2

From (4.127) and (4.128) in equation (3.17) which we obtained the information matrix
to be adjusted for slope as,

8a, + a, L% u, a, v,
8m " 8m(m-1) 8(m-1)
C, = @ A e ——— (4.129)
g(m-1) * 8(m —1) ["2“]

An inverse of a matrix in sym(s,H) can be computed by solving a system of linear

equations. By the same approach we obtained the blocks of the inverse CO_1 partitioned

as,
m N _1Vl'
cio| ™ “ (4.130)
_ _1 2[4(m _1)al + az] 1 ................................. .
=y} I W,
o ma,a, ( 2] ma,

From the Kronecker second order regression function we get the slope matrix D using
(3.12) as

!

D:[af'(t) orm af'(t)J,

atl ! 6t2 T atm ......................................... (4131)
The adjusted slope matrix was then obtained using (3.13) and written as;
T
H,=DK = (2ti|m Hthlj ................................... (4.132)

m+1
Thisisan m X[ ) j matrix with K being the coefficient matrix as defined in (3.6).
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Now a design that is D-slope optimal if and only if it satisfies condition (3.21). That is,
a design is D-slope optimal for K'@ in T if,
traceH,C,C, "Hg=traceH,H; forall je€d(a) ......ccoocommriviiriaiiin, (4.133)

For j=1 we evaluated the following requisite products of matrices:

i) aproduct of (4.127), (4.130) and (4.132),

Mt —t,(t, +t, +--+t,) —t? —t?
H,C,C, "H) = f ‘Fzz mztzz—Tz(tlftﬁ“'Hm):“ —Fﬁ
m°e, :
-t -t cemtZ —t (t 4+t et )
m’A—-(m-1)B -A -A
- 2A—(m-1)B “A
H,C.Co Hy = —2 A mA-M-DB - A T (4.134a)
o
-A -A m?’A-(m-1)B
with
a0 4mPA-(m-1)B
trace(H,C,C, 'H;) = [ N (4.134b)
ma,
where,

=(m-2y 1 . .
Bt = L isj=12..m
g ZO[ i )(i+2)2 .

ii) a product of (4.132) and its transpose,
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M.+t +t, +--+t2 tt, tt

.4 tt, M2 +t7 +t, 4+ 12 tt
HOHOZm_ . .

m

tt tt P2t e

m-1

................ (4.135a)

The trace of (4.135a) is,

2 —
trace(H_H7) = 4 +mm A (4.135b)

after employing the ordinates of the support points in the m-ingredient mixture design,

where,

Using (4.134b) and (4.135b) in condition (4.133) we obtained the equivalence relation,

Am*A—(m-1)B] 4(m*+m-1)A
ma, m '

This implies that,

. m’A—(m-1)B
omP+m-1A
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Similarly, for j=2, we worked out the product of matrices (4.128), (4.130) and (4.132)

getting,
+t2+oot —t(t, +t+ 41, t+tt, t+tt,
HoczcoilH(’):zi t22+.t2t1 tf+t32+-~-tfﬂ—t%(t1+t3+...+tm):.. £ +.t2tm
a, : : " :
£+t £+tt, S RN G Y | AR ARRIRS )|
(m-1)(A+B) A+B A+B
A+B m-1)(A+B) -- A+B
H,C,C, Hy = o . (m-D)(A+B) - B (4.136a)
m-a, : : ‘. :
A+B A+B -+ (m=1)(A+B)

where,

The trace of (4.136a) is;

4(m —1)(A+ B) (4.1360)

ma,

trace(H,C,C, 'H;) =
Using (4.135b) and (4.136b) in condition (4.133), we obtained the equivalence relation,

4m-1)(A+B) 4m’+m-1)A
ma, - m '

This led to the solution,

_(m-1)(A+B)
27 (m2+m-1)A
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Therefore, for a design with m>2 ingredients, we have the optimal slope weight vector

for the D-criterion as;

2 —
o m é\—(m—l)B and a, = (m2 H(A+B)
(m*+m-1)A (m*+m-1A

...................................... (4.137)

Therefore, in the second-degree Kronecker model for mixture experiments with m> 2

ingredients, the unique D- optimal slope design for K'@ is

mmA—-(m-1)B] N (m-1)(A+B)

D)y — —
mo =on +a,n, = .
( ) v 20 (m2+m—l)A ' (m2+m—1)A 2

To obtain the optimal value V() , first we adjusted the information matrix (4.129) for

slope by pre- and post-multiplying by the adjusted slope matrix (4.132). This led to the

matrix;
2"%(8a, + a,) A+ (M -1, B a,(A+B)
m73 — o
H,C,H, = 1 az(A.+ B) 2 (8a1+a2)A+(m De,B .
m(m—1) : : -
a,(A+B) a,(A+B) .. --(4.138a)
a,(A+B)

a,(A+B)

2"*(8a, + a,) A+ (Mm-1)a,B

after employing the ordinates of the support points, where,

, &(m-1) 1 .
A:ti :Z . _—2,|:l,2,...,m
(i+2)

io\ |

m-2
B:tltj: . %,Iijz:[,z,,m
o\ 1 )(+2)
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The adjusted information matrix has the determinant;

detH,C,H! = mpm-z(m + )+ (M=3)a,]A+2(M—2)a,B

{27 8at, + @,) + 3(M — 1), ]A + 4(m — 1)z, B}

I ...(4.138b)

From equation (3.22), the determinant criterion, for a nonnegative definite matrix C of

order s is given by;

v(g,) = (tracec)§ ........................................................... (4.139)

At present the determinant criterion, is obtained for the information matrices of order
s=m from the relation;

AL

Vg) = (detH G (4.140a)

Using the determinant value (4.138b) and the equation (4.140) we got the maximum of

the D criterion as,

L {[2""2(8051 +a,)+(Mm=-3)a,]JA+2(m— 2)0:28}%1 X -..(4.140b)

V(¢o) = (detHoCoHc'J)E = 2m(m—1)

{[Zm'z(&xl +a,)+3(M-Da,]A+4(m _1)0‘25}%

4.2 Numerical Slope Optimal Weighted Centroid Designs

We generated numerical ¢, —optimal slope weighted centroid designs for A- and D-

criteria for m <[5, 20] . To do this, we employed the analytical results for the case of a

design with m ingredients.

4.2.1 Numerical D-Optimal Slope Weighted Centroid Designs

The numerical ¢, —optimal designs presented here are as a result of proper utilization

of the findings on the D-optimal slope design with m ingredients. In particular, we
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present the values of D-optimal slope weight vector and the maximum of the
determinant criterion for each of the values m <[5, 20] . Going with these are values of
the sums of the squares and cross products of the ordinates of the support points for
each particular m ingredients design. These squares and cross products are gotten from
the definitions of A and B in equation (4.134). The D-optimal slope weight vector is as
given in (4.137) with corresponding maximum of the D-criterion as shown in (4.140Db).

They are as shown in table 3 below:



Table 3: Numerical D-slope optimal weighted centroid designs
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Sum of Optimal
Number of | Sum of Cross- Optimal Weight Vector value
ingredients Squares products

m A B a a, v(gy)

5 2.956666667 | 0.810833333 | 0.824242895 | 0.175757105 | 4.083088547
6 4.213888889 | 1.257222222 | 0.841664389 | 0.158335611 | 7.832687801
7 6.203741497 | 1.989852608 | 0.855918137 | 0.144081863 | 16.62771156
8 9.412648810 | 3.208907313 | 0.867797174 | 0.132202826 | 38.18245748
9 14.67544092 | 5.262792108 | 0.877877555 | 0.122122445 | 93.37814928
10 23.43789683 | 8.762455908 | 0.886562146 | 0.113437854 | 240.4342067
11 38.22453430 | 14.78663748 | 0.894134633 | 0.105865367 | 646.0738788
12 63.47665645 | 25.25212214 | 0.900800051 | 0.099199949 | 1799.201131
13 107.0612923 | 43.58463589 | 0.906711612 | 0.093288388 | 5163.871038
14 183.0007919 | 75.93949953 | 0.911987627 | 0.088012373 | 15206.46235
15 316.4318502 | 133.4310583 | 0.916722030 | 0.083277970 | 45779.14297
16 552.6509533 | 236.2191031 | 0.920991009 | 0.079008991 | 140480.2054
17 973.6749457 | 421.0239924 | 0.924857331 | 0.075142669 | 438351.1759
18 1728.665226 | 754.9902808 | 0.928373290 | 0.071626710 | 1388105.141
19 3090.001406 | 1361.336179 | 0.931582823 | 0.068417177 | 4453420.629
20 5556.938835 | 2466.937430 | 0.934523089 | 0.065476911 | 14455379.73

As seen from the results, generally the first centroid 7, is more weighted («, ) than the
second centroid, 7, . This implies that the response is principally a function of the pure
ingredients. As the number of ingredients increase the weight value ¢, increases while
a, decreases. This is an indication that in presence of many factors the response is

dominated by the main effects concurring with the sparsity-of-effects principle. This
principle sometimes referred to as the hierarchical ordering principle, Wu et. al. (2000).
The main factor effects dominate the two factor interaction effects. The D-optimal slope

values increase with increase in the number of ingredients.

4.2.2 Numerical A- Optimal Slope Weighted Centroid Designs

The numerical ¢, —optimal designs presented here are as a result of proper utilization

of the findings on the A-optimal slope design with m ingredients. We present the values

of A-optimal slope weight vector and the maximum of the average variance criterion
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for each of the values m < [5,20]. Together with these are values of the sums of the

squares and cross products of the ordinates of the support points for each particular case
of m ingredient design, since they are included in the working. These squares and cross
products are gotten from the definitions of A and B in equation (4.134). The A-optimal

slope weight vector is as given in (4.80) with corresponding maximum of the A-

criterion as shown in (4.80a). They are as shown in table 4.

Table 4: Numerical A-slope optimal weighted centroid designs

Sum of .
Number of | Sum of Cross- Optimal Weight Vector Optimal
ingredients |  Squares products value

m A B o a, V(4 ,)

5 2.956666667 | 0.810833333 | 0.829201318 | 0.170798682 | 0.007233662
6 4,213888889 | 1.257222222 | 0.845920916 | 0.154079084 | 0.004679335
7 6.203741497 | 1.989852608 | 0.859735778 | 0.140264222 | 0.002956347
8 9.41264881 | 3.208907313 | 0.871127459 | 0.128872541 | 0.001823532
9 14.67544092 | 5.262792108 | 0.880686693 | 0.119313307 | 0.001099475
10 23.43789683 | 8.762455908 | 0.888873427 | 0.111126573 | 0.000649383
11 38.2245343 | 14.78663748 | 0.896007767 | 0.103992233 | 0.000376665
12 63.47665645 | 25.25212214 | 0.902307370 | 0.09769263 | 0.000215101
13 107.0612923 | 43.58463589 | 0.907923173 | 0.092076827 | 0.000121219
14 183.0007919 | 75.93949953 | 0.912964364 | 0.087035636 | 6.75484E-05
15 316.4318502 | 133.4310583 | 0.917513889 | 0.082486111 | 3.72831E-05
16 552.6509533 | 236.2191031 | 0.921637573 | 0.078362427 | 2.04114E-05
17 973.6749457 | 421.0239924 | 0.925389399 | 0.074610601 | 1.10969E-05
18 1728.665226 | 754.9902808 | 0.928814627 | 0.071185373 | 5.99664E-06
19 3090.001406 | 1361.336179 | 0.931951732 | 0.068048268 | 3.22354E-06
20 5556.938835 | 2466.93743 | 0.934833707 | 0.065166293 | 1.72487E-06

As seen from the results in table 4, generally the first centroid 7, is more weighted than
the second centroid, 7, , since the weight candidate ¢, is greater than «, . Thisimplies

that the response is predominantly a function of the pure ingredients. As the number of

ingredients increase the weight value ¢, increases while «,decreases. This is an

indication that in presence of many factors the response is dominated by the main

effects. In this case, the main factor effects dominate the two factor interaction effects.
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The findings here concur with the sparsity-of-effects principle. The A-optimal slope

values decrease with increase in the number of ingredients.

4.3 Sensory Evaluation Experiment

We now present the analysis of the sensory experiment data for two, three and four
selected fruits. Development of fruit blends is an important task to nutritionists. It is
therefore important to have polynomial functions that describe accurately mixture
properties in terms of compositions and pure blends that meet nutritional demands or
taste preferences of consumers. The empirical models assist in coming up with
formulations that attain optimal desired qualities of the fruit punch. Each fruit was taken

individually and in combination with each of the other fruits.

4.3.1 Two Ingredients Experiment

We begin with the experiment with two fruits namely pine apple and pawpaw. The
response was taken as the average score for the four attributes: taste, colour, texture and
smell. Since each of the attributes are on the 1-15 scale, so is the response. The twelve
data values are from three support points each replicated four times. The points
comprised two pure blends and one binary blend.

4.3.1.1 Fitted Model

The estimates of the coefficients for the Kronecker model were obtained using SAS

software package. The model is;

y = E(y) =10.125( pineappld?® + 9(pawpaw)® + 20.375peneappld pawpaw)

4.3.1.2 Model Validity
An analysis of the model validity was performed to examine the fitted model if it

provides an adequate approximation of the true response surface. Analysis of variance
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(ANOVA) was used to examine the Kronecker model. As is evident from the output
below, 98.2% of the variation in the response is accounted for by the purposeful changes
made on the ingredients. The overall model is highly significant with an estimated
probability value less than 0.0001 (from table 5), much lower than the 0.05 and 0.01

significant levels.

Table 5: ANOVA for two ingredients Kronecker model

The GLM Procedure
Dependent Variable: yield

Sum of
Source DF Squares Mean Square F Value Pr >
F
Model 3 1124.125000 374.708333 163.51
<.0001
Error 9 20.625000 2.291667
Uncorrected Total 12 1144.750000
R-Square Coeff Vvar Root MSE yield Mean
0.981983 15.66026 1.513825 9.666667

NOTE: No intercept term is used: R-square is not corrected for the mean.

The t-test values were used to test for the significance of the individual parameters

(hence factors) in the model. The test involves testing the hypothesis H,: ;=0
against the alternative hypothesis H, : #; =0 From table 6 below, all the coefficients

are highly significant with very low estimated probability (Pr > [t|) values.

Table 6: T-test Values for coefficients of the two ingredients Kronecker model

Standard
Parameter Estimate Error t Value Pr > |t]
pine*pine 10.12500000 0.75691259 13.38 <.0001
paw*paw 9.00000000 0.75691259 11.89 <.0001
pine*paw 20.37500000 3.21130814 6.34 0.0001

The assumption of normality on the errors, clearly points to a similar distribution on the
observations. By examination of the P-P and Q-Q plots from figure 1 below, there is no

indication of any serious deviation from normality.
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Figure 1: P-P and Q-Q plots
4.3.1.3 Slope Information for the D-optimal Criterion
The fitted model for the design with two ingredients can be written in a way to coincide

with the Kronecker product as follows;
¥ =E(y)=10.125 +10.1875,t, +10.1875,t, +9t,%,.....ccoeeeeeeiiiiiiiii, (4.141)

where the two ingredients are symbolized as t, represent pineapple and t, represent

pawpaw.

Using the definition of slope matrix (equation 3.12) and the regression function (4.141)

the slope matrix for the design with two ingredients was obtained as;

2025, 10.1875%, 10.187%, O
D =] e (4.142)

0  10.187%, 10.187%, 18,

The coefficient matrix (4.2) was then used in the definition for the adjusted slope matrix

(3.13) to get the adjusted slope matrix;

Ho= DK =[ e (4.143)

20.25t, 101875,
18, 10.187%,
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To derive the D-optimal slope information matrix the information matrix (4.8) was pre-
and post-multiplied with the slope matrix (4.143) to get the square information matrix
(as defined in (3.19)),

concen oL 20.25%(8ar, + a1, )t2 + (40.5(20.375)t t, + 20.375°t%)r,
0700 16| (20.25(20.375)t2 + (364.5 + 20.375)tt, +18(20.375)t2)a,

(18(20.375)t7 + (364.5+ 20.375°)tt, + 20.25(20.375)t7)cx,
18°(8ay, + a,)t2 +(36(20.375)tt, +20.375°t) e,

After using the coordinates of the support points and the values of the D-optimal slope

weight vector as from (4.93), simplified to;

....................... (4.144)

1 (34135471875 2805815625
~1600( 2805815625 27281521875

Then the information function definition (3.22) was used with p=0, m=2 and the

information matrix (4.144) to obtain the D-optimal slope information as;

1
v(¢,) = (detC)2 =189.9213469.

4.3.1.4 Slope Information for the A-optimal Criterion
To get the A- optimal slope value for the design with the two ingredients, first pre- and
post-multiplication of the inverse of information matrix (4.10) with the adjusted slope

matrix (4.143) was done, to get the requisite slope information matrix;
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20.25(40.5) ., 20.25(20.375) 20.375* (4a, + a1,) ,,
t - tt, + t;
C—HCIH = o, a, 4o,
oo o 18(20.375),, 20.25(20.375),, 20.375(4a, +,)
- t; - t+ tt,
20, 20, daa,
20.25(20.375),, 18(20.375),, 20.375(4c, + )
- t1 - tz + t1'[2
20, 20, 4o,
2
18(36) . 18(20.375) i, + 20.375" (4, + @) 2
o, a, 4o,
which after utilizing the ordinates of the support points led to the matrix;
5(20.25)(40.5) 20.25(20.375) 5(20.375°)(4a, + @)
_ 4o, 4o, 16a,cx,
| 5(18)(20.375) 5(20.25)(20.375) . 20.375 (4a, + ;)
8a, 8a, 6ae, e (4.145)
_5(20.25)(20.375) 5(18)(20.375) 20.375 (4a, + a,)
8a, 8, 16,
5(18)(36) _5(18)(20.375) 5(20.375°) (4, + )
4o, 4o, 16a,cx,
with
12812 20.375°)(4
traceC = 020128125 S(20375)(Aoy+ @) _ 5751649535 (4.146)

4o, 8oy,
where the A- optimal slope weight vector is available from (4.19).

The A- optimal slope information was gotten by using equation (3.22) with p = -1,

m=2 and the trace (4.146) of the information matrix (4.145) as;

-1 -1
(—5751'642535] =3.47726756x10™".

1
Vv =| —traceC| =
0= Lrasc] (228
4.3.2 Three Ingredients Experiment
The three fruits that were involved in the experiment were: pine apple, pawpaw and
banana. The response on a scale 1-15 was taken as the average score for the four

attributes: taste, colour, texture and smell. The twenty-eight data values are from seven
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support points for weighted design each replicated four times. The points comprised the

three pure blends, three binary blends and a ternary blend.

4.3.2.1 Fitted Model

The estimates of the coefficients for the Kronecker model were obtained using SAS

software package. The model is;

¥ = E(y) =10.54( pineappld?® + 9.35( pawpaw)? +11.92(banana)® +17.70peneapple* pawpaw+
10.39pineapple*banana+17.83pawpaw*banana

4.3.2.2 Model Validity

Analysis of the model validity was performed to examine the fitted model if it provides

an adequate approximation of the true response surface. Analysis of variance

(ANOVA) was used to examine the Kronecker model. As is evident from the output

below, 96.3% of the variation in the response is accounted for by the purposeful changes

made on the amounts of each fruit in the mixture. The overall model is highly significant

with an estimated probability value less than 0.0001 (as is seen from table 7), much

lower than the 0.05 and 0.01 levels of significance.

Table 7: ANOVA for three ingredients Kronecker model

The GLM Procedure
Dependent Variable: yield

Sum of
Source DF Squares Mean Square F Value Pr >
F
Model 6 2664.738593 444,.123099 95.60
<.0001
Error 22 102.198907 4.645405
Uncorrected Total 28 2766.937500
R-Square Coeff Var Root MSE yield Mean
0.963064 22.24847 2.155320 9.687500

NOTE: No intercept term is used: R-square is not corrected for the mean.

Student t-test values were used to test for the significance of the individual coefficients

(hence fruits) in the model. A choice between the hypothesis H,: 4, =0 and the

alternative hypothesis H, : f; = Owas made as guided by the rejection rule. From table
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8 below, all the coefficients but that for the interaction between pineapple and banana,
are highly significant with very low estimated probability (Pr > |t|) values at the 0.01
level of significance. The interaction between pineapple and banana, unlike all the other

coefficients, is insignificant at the 0.05 level of significance.

Table 8: T-test Values for coefficients of the three ingredients Kronecker model

Standard
Parameter Estimate Error t Value Pr >
It]
pine*pine 10.54083600 1.07358032 9.82 <.0001
paw*paw 9.35333600 1.07358032 8.71 <.0001
ban*ban 11.91583600 1.07358032 11.10 <.0001
pine*paw 17.70245194 4.,24979173 4.17 0.0004
pine*ban 10.38995194 4.24979173 2.44 0.0230
paw*ban 17.82745194 4.,24979173 4.19 0.0004

The assumption of normality on the errors, clearly points to a similar distribution on the
observations. By examination of the P-P and Q-Q plots from figure 2 below, there is no

indication of any serious deviation from normality.

Normal P-P Plot of YIELD Normal Q-Q Plot of YIELD

o =]
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I 1
Q

Expected Cum Prob
T

Expected Normal Value
7

o
i
i

oo T T T T T
0o 02 0.4 06 0.8 1.0 4 & 8 10 12 14 16

Observed Cum Prob Observed Value

Figure 2: P-P and Q-Q plots
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4.3.2.3 Slope Information for the D-optimal Criterion

The fitted model for the design with three ingredients can be written as follows;
J=E(y)=at’ +bt,> +ct? +dtt, +ett, + fity...ooooeiiiiiieiiiiiieeie . (4.147)

where the three ingredients are t, = pineapple, t, = pawpaw, t, =banana and the

coefficients assigned as:

a=10.540836 b =9.353336 ¢ =11.915836 d =17.70245194 e =10.38995194 and

f =17.82745194.

The definition of slope matrix (equation 3.12) and the regression function (4.147) were

used to get the slope matrix for the design with three ingredients as;

2at, 4t, ¢t, 4t, O O ¢, O O
D=| 0 4t 0 4t 2bt, -t 0O +t, O
0O 0 £, 0 0 ft £t =t 2ct,

The coefficient matrix (4.23) was then used in the definition for the adjusted slope

matrix (3.13) to get the adjusted slope matrix;

2at, %tz 3l 0
H,=DK = 2bt, S0 Sl | (4.148)
2ct, 0 £t +t,

To derive the D- optimal slope information matrix, the information matrix (4.29) was
pre- and post-multiplied with the slope matrix (4.148) to get the square information

matrix,
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(Ba, + a)a® ,, | (4adtt, +4aett, +d it +etl)a,

4

6 48
2 2 2
C = HyCH: = [2bdt’ + (4ab+ js)tltz +2adt]a,
[2cet? + (4ac + e*)tt, + 2aet’]a,
48
[2adt? + (4ab + d?)tt, + 2bdt]e,
48
(8ay, + a,)b? (2, (4bdit, + dbftt, +d 2+ £2))a,
6 2 48
[2bfE2 + (4bc + f2)tt, + 2cft?]a,
48
[2aet? + (4ac+e?)tt, + 2cet’]a,
48
[2cft? + (4bc + f2)Lt, + 2bft’]a,
48
8a, +a,)c’ Acett, + 4cft,t, + et + 22
e R PL)

When coordinates of the support points for the three ingredients design and the values

of the D-optimal slope weight vector from (4.106) are employed, (4.149) simplified to;

108773160706 355376682088 248501901972
355376682088 872447938143 382771632331]....(4.150)
248501901972 382771632331 138382278064

C=
551232

Equation (3.22) was the used with p =0, m=3and the information matrix (4.150) to

obtain the D- optimal slope information as;

1 1
V(4,) = (detC)? = (78176428861)° =198.468662331.

4.3.2.4 Slope Information for the A-optimal Criterion
To get the A-optimal slope value for the design with the three ingredients, first the
inverse of information matrix (4.31) was pre- and post-multiplied with the adjusted

slope matrix (4.148), to get the necessary slope information matrix;
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12a’ (2 4ad 4ae 2de 2(8c, + a,)(d ] +€°t7)

tt, ——tt, + tt +
a, a, e 3, e 270, e 27,
2
2bd - 2ad 2+ ef 2+ de i, + df 4, + 2(8a, + a,)d i,
3, 3, 270, 27, 27a, 270,
2
_2ce 2 _@tlz df 2+ de i@, + ef G, + 28, + a,)e i,
3, 3, 270, 27, 270, 270,
2
_2bd - 2ad 2+ ef 2+ de i+ df G, + 2(8a, + a,)d t,
3, 3, 27ay 27, 27, 27,
2 242 242
12b - 4bd i, - ﬁtt 2df @, + 2(8a, + a,)(dt] + f1t3)
a, 3, 3a, 27 27a 27,
2
—ﬁt —@t de 2+ df 4+ ef t1t3+2(8a1+a2)f o
3, ° By ° 270:1 27y 27, 27T,
2
2ce ¢ _@tl 2+ de i, + ef it + 2(8a, +a,)e i,
305l 3o, 27a1 27, 27, 27,
2
—ﬁtg—@t de 2+ df i@, + ef @, + 28 +a,) f 0,
3(21 30(1 27(11 27(21 27(11 270{1(22 (4 151)
242 242
12¢? - 4ce dee iy _ﬂtzts N 2ef i, + 2(8a, +a,) (et + 1))
o, 3o, 3, 27 27y,

After using the coordinates of the support points for the design with three ingredients

simplified to the matrix;

58a’ . 13(de —18ad —18ae) . 29(8a, + a,)(d* +€%)

3oy

4860, 24300,

13(8a, + ;)4 _ 29(ef ~18bd ~18ad) _13(de- df)

486a,02,
13(8a, + a,)€’ N 29(df —18ce —18ae) . 13(de +ef )

4860, 9720,

4860,0,

4860, 9720,

1380, +a,)d® 29(ef ~18bd ~18ad) _13(de-+df)

486, 486a, 972,

580°  13(df ~18bd —18bf) 29(8e +t,)(d” + )

3, 4860, 2430,
138+ ;) 1°  29(de—18ct —180f) 13(df +ef)

4860, 4860, 972a,
13(8cy, + )€’ . 29(df —18ce —18ae) . 13(de + ef)
4860, 4860, 972a,
13(8e, + ;) 1 29(de—18cf ~180f) 13(df +ef)
486,01, 4860, 9720,
58c? . 13(ef —18ce —18cf) . 29(8a, + a,)(€* + f7)
3a, 4860, 24300,

....... (4.152)
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with
2 2 2 _
traceC — 58(a” +b” +c?) +13[de+df +ef —18(ad +ae+bd + bf +ce +cf )]
. 486, .(4.153)
2 2 2
N 5808, +a,)(d” +e" + f7) 138679442
243,

where the A- optimal slope weight vector entries are available from (4.40).

The A- optimal slope information was gotten by using equation (3.22) with p = -1,

m=3 and the trace value (4.153) as;

-1

v(g,)= (%traceCj =

-1
(Mj =2.163262237x10*.

4.3.3 Four Ingredients Experiment

The four fruits that were involved in the experiment were: pine apple, pawpaw, banana
and coconut. The response on a scale 1-15 was taken as the average score for the four
attributes: taste, colour, texture and smell. The sixty data values are from fifteen support
points for weighted design each replicated four times. The points comprised the four
pure blends, six binary blends, four ternary blend and the four fruits together in the

mixture.

4.3.3.1 Fitted Model
The estimates of the parameters for the Kronecker model were obtained using SAS
software package. The model is;

¥ =E(y)=11.17(pineappld® +10.50( pawpaw)* +10.12(banana)’ + 9.31(coconut) +
24.68peneapple* pawpaw+ 21.54 pineapple*banana+16.40pineapple* coconut +
19.25pawpaw*banana+10.86 pawpaw* coconut+16.72banana* coconut
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4.3.3.2 Model Validity

The analysis on the model validity was done to examine the fitted model if it provides
a good approximation of the true response surface. Analysis of variance (ANOVA) was
used to examine the Kronecker model. As is evident from the output table 9 below,
96.67% of the variation in the response is accounted for by the purposeful changes made
on the amounts of each fruit in the mixture. The overall model is highly significant with
an estimated probability value less than 0.0001, much lower than the 0.05 and 0.01

levels of significance.

Table 9: ANOVA for the four ingredients Kronecker model

The GLM Procedure
Dependent Variable: yield

Sum of
Source DF Squares Mean Square F Value Pr
> F
Model 10 5794.907380 579.490738 145.17
<.0001
Error 50 199.592620 3.991852
Uncorrected Total 60 5994 .500000
R-Square Coeff Var Root MSE yield Mean
0.966704 20.43951 1.997962 9.775000

NOTE: No intercept term is used: R-square is not corrected for the mean.

The t-test values were also used to test for the significance of the individual coefficients

(hence fruits) in the model. The tested hypothesis was H,:A; =0 against the
alternative hypothesis H, : 3, # 0. From the information below (in table 10), all the

coefficients significant with small estimated probability (Pr > |t[) values at the 0.05 and
0.01 levels of significance. The interaction between pawpaw and coconut, compared to

the other coefficients, is the least significant.
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Table 10: T-test Values for coefficients of the four ingredients Kronecker model

The GLM Procedure
Dependent Variable: yield

Standard

Parameter Estimate Error t Value Pr >
[t

pine*pine 11.16953443 0.98751632 11.31
<.0001

paw*paw 10.49541136 0.98751632 10.63
<.0001

ban*ban 10.12119869 0.98751632 10.25
<.0001

coco*coco 9.30566494 0.98751632 9.42
<.0001

pine*paw 24.67598681 3.63911375 6.78
<.0001

pine*ban 21.53760215 3.63911375 5.92
<.0001

pine*coco 16.40167588 3.63911375 4.51
<.0001

paw*ban 19.24769445 3.63911375 5.29
<.0001

paw*coco 10.86176818 3.63911375 2.98
0.0044

ban*coco 16.72338352 3.63911375 4.60
<.0001

The assumption of normality on the errors, clearly points to a similar distribution on the
observations. By examination of the P-P and Q-Q plots in figure 3 below, there is no

indication of any serious deviation from normality.
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Figure 3: P-P and Q-Q plots

4.3.3.3 Slope Information for the D-optimal Criterion

The fitted model for the design with four ingredients can be written as follows;
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§=E(y) =at’ +bt) +ct? + dt? +ett, + ftt, + gtt, + htt, +Ktt, + mtt,,......(4.154)

where;

the four ingredients are t, = pineapple, t, = pawpaw, t, =bananaand t, = coconut

the coefficients are assigned as:

a=11.16953443 b =10.49541136 ¢ =10.12119869 d =9.305664494
e =24.67598681f =21.53760215 g =16.40167588 h =19.24769445 k =10.86176818
m =16.72338352

The definition of the slope matrix (equation 3.12) was invoked to give the slope matrix

for the design with four ingredients as;

2at, £t, +t, %, ¢, O O O St O O O &, O O O
.| O st 0 0 st 2t Bt &, O B 0 0 0 4t O O
0O 0 <+t O O O o, 0 4t &t 2, 2t, 0O 0 ot O
0 0 0 % 0 0 0 & O0 0 0 =t 3t &t 2ot 2dt,

The coefficient matrix (4.45) was then used in the definition for the adjusted slope

matrix (3.13) to get the adjusted slope matrix;

2at, 0 0O O ¢, +t, 4, O 0 O
0O 2bt, O O ¢ O O it Xt 0
H,=DK = 2 o A P (4.155)
0O 0 2 0 0 +t 0 5t, 0 mt,
0O 0 0 2dt, 0 0 %t 0 kt, mt

To derive the D-optimal slope information matrix, the information matrix (4.51) was

pre- and post-multiplied with the slope matrix (4.155) to give the square information

matrix,
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(B, +a,)a* , Lat(et + fu+ gt)a, | (€t + 27 + g’t)a,
8 24 96
[2bet? + (4ab+e*)tt, + 2aet’]a,
C=H,C,H! = 96
orone [2cft? + (4ac+ f2)tt, + 2aft’]a,
96
[2dgt; + (4ad + g*)tt, +2agt’la,
96
[2aet? + (4ab +e?)tt, + 2bet ],
96
(8a, +a,)b’ (2, b(et +ht +Kt)a, (€%t +h’t2 +Kt)) e,
2 24 96
[2cht? + (4bc + h?)tt, + 2bht ],
96
[2dKE2 + (4bd + k)t t, + 2bkt]a,
96
[2aft” + (4ac + f2)tt, + 2cftl]ea,
96
[2bht? + (4bc + h?)tt, + 2cht’]e,
96
L o(ft +ht, +mt e, | (f 47+ ht2 + m’t))a,
24 96
[2dmt; + (4cd + m?)tt, + 2cmt]]a,
96
[2agt’ + (4ad + g*)tt, +2dgt ]a,
96
[2bkt2 + (4bd + k*)t,t, + 2dkt’]e,
96
[2emt] + (4cd +m*)tt, + 2dmt; ],
96
L dt (gt +Kt +mty)a, (9%t + k*t; + m’t))a,
24 96

(8a, + ocz)c2

5

.o (8.156)

(8o, + a,)d 2,
t4

After using the coordinates of the support points for the design with four ingredients,
the coefficients from the model (4.154) and the D-slope optimal values of the derived
weight vector (4.119), simplified to;

2304970 5.8981  5.0498 3.7135

C_ 5.8981 2029420 4.3729 2.4553 @.157)
B 50498 43729 1893485 35858 ............... .

3.7135 24553  3.5858 1584876

Equation (3.22) was then employed with p =0, m=4 and the matrix (4.157) to obtain

the D-slope optimal information as;
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1 1

v(4,) = (detC)* = (1.399x10°)* =193.4307.

4.3.3.4 Slope Information for the A-optimal Criterion
To get the A- optimal slope value for the design with the four ingredients, first the
inverse of information matrix (4.53) was pre- and post-multiplied with the adjusted

slope matrix (4.155), to derive the necessary slope information matrix;

16a° €24 (120, +a,) (€% + 177 +9°t;)  at(et, + ft; + gt,) | eftt; +eght, + fgtt,
o, 32, o, 32a,
_be _7t2 fh 2, Ok . e(ftt +gtt, +htts+ktt,) (12 + a,)ett,
C- 20, ° 2a 64c, °  64a, 64c, 320,
o e —itz eh o, gm ., f(et1t2+gtlt4+ht2t3+mt3t4)+(12a1+a2)f2t1t3
20, ° 20, " 6hay ° 64a1 ! 64a, 2a,a,
_dg ., ag 292, ek 2 t2 g(ett, + ft1t3+kt2t4+mt3t4)+(12a1+a2)gzt1t4
20, ' 2a ' 6da, 640:1 64a, 2a,a,
_be, ae, o gk o e(ft + gt +htt +ktt,) (120, + )%t L,
20, ° 2o, ' 6da, ® 64, 64a, 2a,a,
16b* , 2, (2 +a,) (€t + 0’ +k*t7) b, (et, + ht, +kt,) . ehtty +ektt, + hktt,
a 32a,, a, 32a,
_ch . bh, ef 24 km ., h(ett, + ft1t3+kt2t4+mt3t4)+(12a1+a2)h2t2t3
20, ° 20, " 64ay 64a, * 64c, 3201,
_dko bkoooeg o hm o, K(ett, + bt +htt +mtt,) | (12a, + a,)Kt,t,
20, * 20, 0 64a, T 64, 64, 32a,ax,
oAt eh o, gm o, f(et1t2+gt1t4+ht2t3+mt3t4)+(12a1+a2)f2t1t3
20, ° 2a, ' 64a, © 6da, 64a, Ra,a,
_ch bh, ef ., km ., hiett,+ ft1t3+kt2t4+mt3t4)+(12a1+a2)h2t2t3
20, ° 20, ° Bhay, T Bha, 64a, 32a,,
16¢? (2, W20 +a)(f 7+ h’; +mty)  cty(ft +ht, +mt,) . ftt, + fmtt, + hmtt,
a 32, o 32,
_dm, cm., fg 24 hk t2+m(ft1t3+gt1t4+ht2t3+kt2t4)+(12a1+a2)m2t3t4
2a, * 20:1 °64a, ' 64a, ’ 64c, 320,
_dig,[2 ag g, ek 24 fm 2 glett, + ftt, +ktt, + mt,t,) N (120, + )9t ,
20, ' 20, ' Bda, ° 6da, 64c, 2a,a,
dk LT bk LU eg 2y hm . k(ett, +gtt, + htt, +mtst,) (12, +a,)k,t,
20, ¢ 20, 7 64, 64a, 64a, 2a,a,
dm., cm_, fg £y hk +m(ft1t3+gt1t4+ht2t3+ktzt4)+(12a1+a2)m2t3t4
20, ' 20,0 6day 640:1 64, 32a,a1,
16d2 (120;1+052)(th2 +K2ty +m?ty)  dt,(gt, +kt, +mt ) gktt, + gmtt, + kmt,t, (4.158)
a 32a,a, o 32q, R

After using the coordinates of the support points for the four ingredients design (4.158)

simplified to the matrix;
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103a? | 103(12a, + a,)e’+f°+g°) T77a(e+f+9) L 77(ef +eg+ fg)
3, 1536 144a, 4608,
~103¢(b+a) N 103( fh+ gk) N 77(120, + at,)€? N 77e(f +g+h+k)
9720, 3072, 4608a,c1, 92160,
_103f(c+a) +103(eh+ gm) +77(120:1+az)fz +77f(e+g+h+m)
972a, 3072, 4608, 9216¢,
103g(d +a) +103(ek+ fm) N 7712, +,)9° N 77g(e+ f +k+m)
972c, 3072c, 4608, 9216¢,
103¢(b+a) N 103( th+ gk) N 77120, + ar,)€’ N 77e(f +g+h+k)
972a, 3072, 4608a,c1, 92160,
1030° N 10312, +a,)(e* +h* +k*)  77b(e+h+k) N 77(eh+kg+ hk)
3a, 1536 1440, 4608,
103n(c +b) . 103(ef + km) . 7712, + a,)h? N 77h(e+ f +k+m)
972¢, 3072, 4608, 9216¢,
~103k(d +b) N 103(eg + hm) N 77(12a, + a,)k? N T7k(e+g+h+m)
972a, 3072, 4608, 9216a,
_103f(c+a) +103(eh+ gm) +77(12a1+a2)f2 +77f(e+g+h+m)
9720, 30720, 460820, 92160,
~103n(c +b) N 103(ef +km) N 77120, + a,)h? N 77h(e+ f +k+m)
9720, 3072, 4608, 9216¢,
103c? N 103(12a, + ,)(f* +h* +m?)  77c(f +h+m) N 77(fh+ fm+hm)
3, 1536 144, 4608,
~103m(c+d) N 103( fg + hk) N 77(12a, + a,)M? N 7im(f +g+h+k)
972a, 3072, 4608, 9216a,
~103g(d +a) +103(ek+ fm) N 77120, + a,)9° N 779(e+ f +k+m)
972a, 30720, 460820, 92160,
~103k(d +b) . 103(eg +hm) N 77120, + a,)K? N 77k(e+g+h+m)
972¢, 3072, 4608, 9216¢,
~103m(c+d) +103( fg + hk) N 77(120, + a,)M? N 7im(f +g+h+k)
9720, 3072, 4608z, 92160,
103d® 103(12c, +a,)(g® +k*+m?) 77d(g+k+m) 77(gk+gm+km)
3, 1536 T 144, | 4608 .- (4.159)

103(a® +b” +c* +d?) | 103120, +a,)€" + f?+g°+h? +k* +m?)
3, 768
77(ae+ af +ag+be+bh+bk+cf +ch+cm+dg+dk+dm)
- 4860, f e (4.160)
+77(ef +eg+ fg+eh+ek+hk+ fh+ fm+hm+ gk + gm-+km)
243a,cx,

=2.2545%x10*
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where the A- optimal slope weight vector entries are from (4.62) and coefficient values

from (4.154).

The A- optimal slope information was gotten by using equation (3.22) with p = -1,

m=4 and the trace value from (4.160) as;

-1 4 -1
(—2'2545”0 j =1.7742x107" .

v(g,)= Gtracecj =
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CHAPTER FIVE
CONCLUSIONS AND RECOMMENDATIONS
5.0 Introduction
This chapter covers the conclusions, recommendations and suggestions on arears of

further research.

5.1 Concluding Remarks

The study has presented the necessary and sufficient condition for existence of ¢, —

optimal slope mixture designs. The equivalence theorem was presented for the maximal
parameter subsystem. For these cases the moment matrices are of full column rank. The
unique parameter least squares estimates for the designs involved are the best. With this
condition, optimal slope weighted centroid designs were derived for second degree
Kronecker model for mixture experiments for the D- and A-optimal criteria. The

designs were constructed for experiments with two, three and four ingredients.

Analytically a general optimal slope design was constructed using the general forms of
moment and information matrices for weighted centroid designs with m ingredients. It
is important to note that the information functions for these designs are finite mappings
on the real line. For the slope optimal models presented one has to take keen interest on
the scaling of parameter estimates to compensate for the shielding effect between

ingredients in any particular mixture experiment.

One of the key task in this study was to establish numerical values of the restricted
weight vector. It is evidently noted that both for A- optimal and D- optimal slope
designs, the first weight is relatively larger than the second, for designs with two, three
and four ingredients. This could be interpreted to mean the pure blends plays a major

role in determining the response optimality values. They are therefore relatively more
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significant. This is an indication that in presence of many factors the response is
dominated by the main effects. In this case, the main factor effects dominate the two
factor interaction effects. This definitely is in concurrence with the sparsity-of-effects

principle.

The statistical analysis of the sensory experiment data revealed that the Kronecker
model adequately describes the data. This means the model fit is good for this kind of
mixture experiments. Indeed, the Kronecker model with the weighted centroid design
is very efficient considering the few support points that are necessary for a particular
number of ingredients experiment. However, caution has to be exercised in determining
the number of replications for two reasons. First, to allow for precise estimation of error

variance. Second, to guarantee a good precision level for parameter estimates.

5.2 Recommendations

This study established that optimal slope designs are efficient in explaining the response
for mixture experiments. It is recommended that the form of the Kronecker model
discussed be utilized for analysis of simplex centroid designs. Least squares estimators
are to be embraced since they are unique and unbiased for the maximal parameter

subsystem.

The analysis of the sensory experiment data revealed that the Kronecker model is a
highly effective model to describe the response. The model is therefore recommended
for situations where decisions are made on the amounts of the various components have

to be decided to give desired properties of the mixture.

5.3 Areas of Further Research
This study concentrated on weighted centroid design to analyze the slope for the second

degree Kronecker model for mixture experiments. A maximal parameter subsystem was
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considered. Further analysis could be done for non-maximal parameter subsets of the

full parameter vector. One may also consider other forms of the Kronecker model.

The concept of optimal slope could also be extended to other mixture model forms like
for axial designs, symmetric-simplex designs, extreme vertices designs, mixture
amount and mixture process variable designs, among others. The underlying regression
models may also be varied from the Kronecker model like the use of cox regression

models.

Further a need is here expressed on the research to analyze categorical responses in

mixture experiments. It would also be interesting to explore nonlinear models.
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APPENDICES
Appendix 1: Questionnaire Used for Experimental Data Collection

SAMPLE QUESTIONNAIRE
Sensory evaluation and consumer acceptability

You are invited in a study to taste the sensory attributes of items presented. You will be
required to taste samples and rate the samples for intensity of each characteristic. If you
have any prior experience of allergic reactions, you should not participate in the study.

There is no direct benefit to you for participating in the study. You are free to withdraw
from the study at any time.

| understand the above information and voluntarily consent to participate in the study.
Signature.............oceveviinnnnnn. Date.....cvviiii
(TICK (APPROPRIATELY)

Socio- demographic characteristics

1. Gender
Male Female
2. Age
Below 20 20-22 23-24 25-26 above 26

3. Do you take any medication that may affect senses especially smell and taste?

4. Do you have any food allergies? If so, please state

Yes No

5. What is your year of study?

Year 3 |:| Year 4 |:|

6. Have you participated in a tasting panel another time?

Yes No

If yes, how many times? ............

8. Do you smoke
Yes No



Sample Characteristics
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SAMPLE LABEL: ........cccooiiiiiiiiann,
You are expected to describe your likeness of the product in the table using the scale
below.
ATTRIBUTE
Texture Appearance | Taste | Aroma
Scale | Description (mouth (Colour) (Smell)
feel)
15 Greatest imaginable like
14 Greater imaginable like
13 Great imaginable like
12 Like extremely
11 Like very much
10 Like moderately
9 Like slightly
8 Neither like nor dislike
7 Dislike slightly
6 Dislike moderately
5 Dislike very much
4 Dislike extremely
3 Great imaginable dislike
2 Greater imaginable dislike
1 Greatest imaginable dislike

Would you recommend this product to a friend? Give reason
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Combinations ATTRIBUTES TOTAL | MEAN
pine

Label | apple paw paw | texture | colour | Taste | smell |yield1l | yield?2
2.11 1 0 11 10 12 13 46 11.5
2.11 1 0 6 8 10 9 33 8.25
2.11 1 0 8 9 10 11 38 9.5
2.11 1 0 14 15 5 11 45 11.25
2.12 0 1 10 11 7 5 33 8.25
2.12 0 1 7 11 7 11 36 9
2.12 0 1 11 12 7 12 42 10.5
2.12 0 1 13 15 1 4 33 8.25
2.13 0.5 0.5 9 10 10 11 40 10
2.13 0.5 0.5 8 7 8 7 30 7.5
2.13 0.5 0.5 10 11 9 10 40 10
2.13 0.5 0.5 13 15 5 15 48 12
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Combinations ATTRIBUTES TOTAL | MEAN

Label | pineapple | paw paw | banana texture | colour | taste | smell | yield 1 yield 2
3.11 1 0 0 13 11 12 10 46 11.5
3.11 1 0 0 6 5 9 10 30 7.5
3.11 1 0 0 8 14 13 12 47 11.75
3.11 1 0 0 9 12 10 13 44 11
3.12 0 1 0 2 12 11 4 29 7.25
3.12 0 1 0 11 10 5 11 37 9.25
3.12 0 1 0 9 11 4 9 33 8.25
3.12 0 1 0 13 13 11 12 49 12.25
3.13 0 0 1 14 15 9 11 49 12.25
3.13 0 0 1 11 10 8 12 41 10.25
3.13 0 0 1 10 13 11 14 48 12
3.13 0 0 1 14 10 13 14 51 12.75
3.14 0.5 0.5 0 9 11 12 11 43 10.75
3.14 0.5 0.5 0 5 11 6 11 33 8.25
3.14 0.5 0.5 0 7 12 8 11 38 9.5
3.14 0.5 0.5 0 11 12 9 11 43 10.75
3.15 0.5 0 0.5 11 10 10 40 10
3.15 0.5 0 0.5 4 1 6 7 18 4.5
3.15 0.5 0 0.5 10 11 12 12 45 11.25
3.15 0.5 0 0.5 12 9 6 8 35 8.75
3.16 0 0.5 0.5 9 11 9 8 37 9.25
3.16 0 0.5 0.5 10 11 7 11 39 9.75
3.16 0 0.5 0.5 6 11 4 7 28 7
3.16 0 0.5 0.5 14 15 15 15 59 14.75
3.17 | 0.333333 | 0.333333 | 0.333333 1 6 7 13 27 6.75
3.17 | 0.333333 | 0.333333 | 0.333333 9 7 9 12 37 9.25
3.17 | 0.333333 | 0.333333 | 0.333333 7 7 9 10 33 8.25
3.17 | 0.333333 | 0.333333 | 0.333333 5 1 9 11 26 6.5
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combinations ATTRIBUTES [TOTAL |MEAN
pine

Label| apple pawpaw | banana | coconut |texture |colour |taste |smell |Yield 1 yield 2
4.01 1 0 0 0 10 8| 10| 12 40 10
4.01 1 0 0 0 12 15| 11 9 47 | 1175
4.01 1 0 0 0 8 9| 11| 11 39 9.75
4.01 1 0 0 0 14 14| 14| 15 57 | 14.25
4.02 0 1 0 0 9 12 8| 12 41| 10.25
4.02 0 1 0 0 13 14 2| 14 43 | 10.75
4.02 0 1 0 0 12 15 9 14 50 125
4.02 0 1 0 0 10 12 9 8 39 9.75
4.03 0 0 1 0 4 5 5| 13 27 6.75
4.03 0 0 1 0 10 11| 10| 14 45| 11.25
4.03 0 0 1 0 8 6| 11| 10 35 8.75
4.03 0 0 1 0 15 15| 14| 13 57 | 14.25
4.04 0 0 0 1 10 12 9 9 40 10
4.04 0 0 0 1 9 10 8 9 36 9
4.04 0 0 0 1 15 10| 10 8 43 | 10.75
4.04 0 0 0 1 10 7| 10 5 32 8
4.05 0.5 0.5 0 0 10 10| 10 9 39 9.75
4.05 0.5 0.5 0 0 10 9 5| 11 35 8.75
4.05 0.5 0.5 0 0 9 7| 10 9 35 8.75
4.05 0.5 0.5 0 0 14 15| 15| 15 59 | 14.75
4.06 0.5 0 0.5 0 13 9| 12| 10 44 11
4.06 0.5 0 0.5 0 9 8 9| 10 36 9
4.06 0.5 0 0.5 0 9 9| 10| 11 39 9.75
4.06 0.5 0 0.5 0 14 5| 13 15 47 | 11.75
4.07 0.5 0 0 0.5 10 13 41 14 41| 10.25
4.07 0.5 0 0 0.5 5 6 7 8 26 6.5
4.07 0.5 0 0 0.5 9 8 8| 15 40 10
4.07 0.5 0 0 0.5 6 10 9| 10 35 8.75
4.08 0 0.5 0.5 0 10 11| 12| 10 43 | 10.75
4.08 0 05 0.5 0 12 10| 12| 12 46 115
4.08 0 0.5 0.5 0 6 8 7 9 30 7.5
4.08 0 0.5 0.5 0 6 7 6| 13 32 8
4.09 0 0.5 0 0.5 10 8 7 12 37 9.25
4.09 0 0.5 0 0.5 4 9 8| 15 36 9
4.09 0 0.5 0 0.5 5 9 5 9 28 7
4.09 0 0.5 0 0.5 1 1 1| 10 13 3.25
4.10 0 0 0.5 0.5 4 8| 11| 14 37 9.25
4.10 0 0 0.5 0.5 8 3 7| 15 33 8.25
4.10 0 0 0.5 0.5 10 7] 12| 11 40 10
4.10 0 0 0.5 0.5 10 6 7| 15 38 9.5
4.11 ]0.333333 |0.333333 |0.333333 0 13 10| 12| 15 50 12,5
4,11 | 0.333333 |0.333333 |0.333333 0 9 10 9| 10 38 9.5
4.11 ]0.333333 |0.333333 |0.333333 0 15 15 9| 15 54 135
4,11 | 0.333333 |0.333333 |0.333333 0 11 10 11| 11 43 | 10.75
4.12 10.333333 |0.333333 0 |0.333333 11 10 9| 10 40 10
4,12 10.333333 |0.333333 0 [0.333333 14 13| 10 8 45| 11.25
4.12 10.333333 |0.333333 0 |0.333333 4 9 9| 12 34 8.5
4.12 10.333333 |0.333333 0 |0.333333 10 7 9| 15 41 | 10.25
4.13 | 0.333333 0 [0.333333 [0.333333 5 5| 10 7 27 6.75
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4.13 | 0.333333 0 |0.333333 |0.333333 9 6| 10 7 32 8
4.13 | 0.333333 0 ]0.333333 |0.333333 9 9| 10| 10 38 9.5
4.13 | 0.333333 0 |0.333333 |0.333333 5 13 7| 15 40 10
4.14 0 ]0.333333 |0.333333 |0.333333 6 9 6| 15 36 9
4.14 0 10.333333 |0.333333 |0.333333 5 7 4 6 22 55
4.14 0 ]0.333333 |0.333333 |0.333333 12 9| 10| 13 44 11
4.14 0 [0.333333 |0.333333 |0.333333 3 7 5| 12 27 6.75
4.15 0.25 0.25 0.25 0.25 11 13| 10| 15 49| 1225
4.15 0.25 0.25 0.25 0.25 9 8| 11| 10 38 9.5
4.15 0.25 0.25 0.25 0.25 10 13| 12| 14 49 | 1225
4.15 0.25 0.25 0.25 0.25 9 7] 10] 13 39 9.75
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Appendix 5: SAS Program Codes (Two Ingredients)

DATA twoingredients;
input pine paw yield;
cards;
10 11.5

8.25

9.5

11.25

8.25

OO0 OO
OO R EREROOoO
[

o
&

run;

proc print data=twoingredients;

run;

proc glm;

model yield=pine*pine paw*paw pine*paw/NOINT solution;

estimate 'pine*pine paw*paw pine*paw' pine*pine 2 paw*paw 2 pine*paw
1/divisor=2;

run;

Appendix 6: SAS Program Codes (Three Ingredients)

DATA threeingredients;
input pine paw ban yield;
cards;

100 11.5

7.5

11.75

11

7.25

9.25

8.25
12.25
12.25
10.25

12

12.75
10.75
8.25
9.5
10.75
10
4.5
11.25
8.75
9.25
9.75

oot ooookrRrRrRErEOOOoO
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o o1 o 0001 O O O O O

o
a1
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14.75
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.333 0.333 9.25
.333 0.333 8.25
.333 0.333 6.5

w
w o
w

.333
.333
.333
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run;

proc print data=threeingredients;

run;

proc glm;

model yield=pine*pine paw*paw ban*ban pine*paw pine*ban paw*ban/NOINT
solution;

estimate 'pine*pine paw*paw ban*ban pine*paw pine*ban paw*ban'
pine*pine 3 paw*paw 3 ban*ban 3 pine*paw 1 pine*ban 1 paw*ban
1/divisor=3;

run;

Appendix 7: SAS Program Codes (Four Ingredients)

DATA fouringredients;

input pine paw ban coco yield;
cards;

100 10
11.75
9.75
14.25
10.25
10.75
12.5
9.75
6.75
11.25
8.75
14.25
10.0
9.0

o
(&)
~J
(@)

9.75
8.75
8.75
14.75
11.0
9.0

OIS
11.75
10.25
6.5

10.0
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10.75
11.5
T o

OoON O W,
(€]

8

9

9
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3.25
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9
0
0
0
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w
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w
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w
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proc print data=fouringredients;

0.333 0.333 0
0.333 0.333 0
0.333 0.333 0
0.333 0.333 0
0.333 0.333 0
0.333 0 0.333
0.333 0 0.333
0.333 0 0.333
0.333 0 0.333
0 0.333 0.333
0 0.333 0.333
0 0.333 0.333
0 0.333 0.333
0.25 0.25 0.25
0.25 0.25 0.25
0.25 0.25 0.25
0.25 0.25 0.25
run;

run;

proc glm;

model yield=pine*pine paw*paw ban*ban coco*coco pine*paw pine*ban
pine*coco paw*ban paw*coco ban*coco/NOINT solution;

'pine*pine paw*paw ban*ban coco*coco pine*paw pine*ban
pine*coco paw*ban paw*coco ban*coco'
coco*coco 4 pine*paw 1 pine*ban 1 pine*coco 1 paw*ban 1 paw*coco 1

estimate

0

O OO OO OO OoOOo o oo

33 0
.333
.333
.333
.333
.333
.333
.333
.333
.333
.333
.333
.333
0.25
0.25
0.25
0.25

ban*coco 1/divisor=4;
run;
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pine*pine 4 paw*paw 4 ban*ban 4



