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ABSTRACT 

Response surface methodology is a set of techniques that includes setting up a series 

of experiments that yields adequate and reliable measurements of the response of 

interest, determine a model that best fits the data collected from the experimental 

design chosen and determine the optimal settings of the experimental factors that 

produce the maximum (or minimum) value of response. The aim of the study was to 

investigate D- and A- optimal slope designs in the second degree Kronecker model 

for mixture experiments with assumptions that the errors are independent and with 

constant variance. The objectives of study were to obtain: equivalence relation that 

serve as the necessary and sufficient condition for the existence of optimal slope 

designs; optimal slope designs for the D- and A-optimality criteria and numerical 

optimal weighted centroid designs and to demonstrate the practical use of generated 

design in analysis of data obtained from a designed experiment on fruit blending. The 

equivalence relation was proved using matrix algebra. Support points, elementary 

centroid designs, coefficient, moment, information and slope matrices, were used to 

derive optimal designs. D- and A-optimal designs were employed to generate 

numerical optimal designs. The data collected from the designed experiment were 

analyzed using SAS (Version 8) software. As a result, the study was able to obtain 

generalized optimal slope design for a mixture experiment with at least two 

ingredients. The Kronecker models fitted to the data from the experiment on fruit 

blending explained the variation adequately well with coefficients of determination 

98.2, 96.3 and 96.67 percent for the blend of two, three and four ingredients 

respectively. Kronecker model with the weighted centroid design is very economical 

considering the few support points that are necessary for a particular number of 

ingredients experiment. In conclusion, the findings of this study strongly supports the 

use of the form of the Kronecker model discussed to analyze the response surfaces 

for mixture experiments. The study therefore highly recommends use of these models 

to describe juice qualities that depend on variations in mixture amounts.  

  



vi 

 

 

 

 

TABLE OF CONTENTS 

 

DECLARATION ........................................................................................................... ii 

DEDICATION .............................................................................................................. iii 

ACKNOWLEDGEMENTS .......................................................................................... iv 

ABSTRACT ................................................................................................................... v 

TABLE OF CONTENTS .............................................................................................. vi 

LIST OF TABLES ........................................................................................................ ix 

CHAPTER ONE .......................................................................................................... 1 

1.0 Introduction .............................................................................................................. 1 

1.1 Response Surface Methodology .............................................................................. 1 

1.2 Mixture Experiments ............................................................................................... 2 

1.3 Simplex Designs ...................................................................................................... 3 

1.4 Weighted Centroid Designs ..................................................................................... 4 

1.5 Models for Mixture Experiments ............................................................................. 5 

1.6 Statement of the Problem ......................................................................................... 6 

1.7 General Objective .................................................................................................... 7 

1.8 Specific Objectives .................................................................................................. 7 

1.9 Research Questions .................................................................................................. 7 

1.10 Research Hypotheses ............................................................................................. 8 

1.11 Scope of the Study ................................................................................................. 8 

1.12 Significance of the Study ....................................................................................... 9 

CHAPTER TWO ....................................................................................................... 10 

LITERATURE REVIEW ......................................................................................... 10 

2.0 Introduction ............................................................................................................ 10 

2.1 Response Surface Designs ..................................................................................... 10 

2.2 Optimal Designs..................................................................................................... 13 

2.3 Optimal Slope Designs .......................................................................................... 14 

2.4 General Design Problem ........................................................................................ 19 

CHAPTER THREE ................................................................................................... 21 

METHODOLOGY .................................................................................................... 21 

3.0 Introduction ............................................................................................................ 21 

3.1 Equivalence Theorem ............................................................................................ 21 

3.2 Optimal Slope Weighted Centroid designs ............................................................ 23 



vii 

 

 

 

 

3.2.1 Slope Information matrices ............................................................................. 23 

3.2.2 Support Points of a Simplex Centroid Design ................................................ 23 

3.2.3 Kronecker products ......................................................................................... 24 

3.2.4 Coefficient Matrix ........................................................................................... 25 

3.2.5 Moment Matrix ............................................................................................... 26 

3.2.6 Information matrix .......................................................................................... 26 

3.2.7 Optimal Slope Weighted Centroid Designs .................................................... 29 

3.2.8 Optimality Criteria .......................................................................................... 30 

3.3 Numerical Optimal Slope Weighted Centroid Designs ......................................... 32 

3.3.1 The Quadratic Subspace  Hssym ,  ................................................................ 32 

3.3.2 Multiplication Identities for Information Matrices ......................................... 34 

3.4 Sensory Evaluation Experiment ............................................................................. 35 

3.4.1 Model Validity ................................................................................................ 37 

3.4.1.1 Testing for Model Assumptions ............................................................... 37 

3.4.1.2 Testing for the Overall Model Fit ............................................................. 37 

3.4.1.3 Testing for the Adequacy of Parameters .................................................. 37 

CHAPTER FOUR ...................................................................................................... 38 

RESULTS AND DISCUSSIONS .............................................................................. 38 

4.0 Introduction ............................................................................................................ 38 

4.1 Equivalence Theorem ............................................................................................ 38 

4.1.1 A- Optimal Slope Weighted Centroid Design ................................................ 40 

4.1.1.1 A- Optimal Slope Weighted Centroid Design with Two Ingredients ...... 40 

4.1.1.2 A- Optimal Slope Weighted Centroid Design with Three Ingredients .... 47 

4.1.1.3 A- Optimal Slope Weighted Centroid Design with Four Ingredients ...... 58 

4.1.1.4 A- Optimal Slope Weighted Centroid Design with m Ingredients ........... 71 

4.1.2 D- Optimal Slope Weighted Centroid Design ................................................ 78 

4.1.2.1 D- Optimal Slope Weighted Centroid Design with Two Ingredients ...... 79 

4.1.2.2 D- Optimal Slope Weighted Centroid Design with Three Ingredients .... 83 

4.1.2.3 D- Optimal Slope Weighted Centroid Design with Four Ingredients ...... 88 

4.1.2.4 D- Optimal Slope Weighted Centroid Design with m Ingredients ........... 93 

4.2 Numerical Slope Optimal Weighted Centroid Designs ....................................... 100 

4.2.1 Numerical D-Optimal Slope Weighted Centroid Designs ............................ 100 

4.2.2 Numerical A- Optimal Slope Weighted Centroid Designs ........................... 102 



viii 

 

 

 

 

4.3 Sensory Evaluation Experiment ........................................................................... 104 

4.3.1 Two Ingredients Experiment......................................................................... 104 

4.3.1.1 Fitted Model ........................................................................................... 104 

4.3.1.2 Model Validity ........................................................................................ 104 

4.3.1.3 Slope Information for the D-optimal Criterion....................................... 106 

4.3.1.4 Slope Information for the A-optimal Criterion....................................... 107 

4.3.2 Three Ingredients Experiment....................................................................... 108 

4.3.2.1 Fitted Model ........................................................................................... 109 

4.3.2.2 Model Validity ........................................................................................ 109 

4.3.2.3 Slope Information for the D-optimal Criterion....................................... 111 

4.3.2.4 Slope Information for the A-optimal Criterion....................................... 112 

4.3.3 Four Ingredients Experiment ........................................................................ 114 

4.3.3.1 Fitted Model ........................................................................................... 114 

4.3.3.2 Model Validity ........................................................................................ 115 

4.3.3.3 Slope Information for the D-optimal Criterion....................................... 116 

4.3.3.4 Slope Information for the A-optimal Criterion....................................... 119 

CHAPTER FIVE ..................................................................................................... 122 

CONCLUSIONS AND RECOMMENDATIONS ................................................. 122 

5.0 Introduction .......................................................................................................... 122 

5.1 Concluding Remarks ............................................................................................ 122 

5.2 Recommendations ................................................................................................ 123 

5.3 Areas of Further Research ................................................................................... 123 

REFERENCES .......................................................................................................... 125 

APPENDICES ........................................................................................................... 130 

Appendix 1: Questionnaire Used for Experimental Data Collection ..................... 130 

Appendix 2: Sensory Data for the Two Ingredients Experiment ........................... 132 

Appendix 3: Sensory Data for the Three Ingredients Experiment ......................... 133 

Appendix 4: Sensory Data for the Four Ingredients Experiment .......................... 134 

Appendix 5: SAS Program Codes (Two Ingredients)............................................ 136 

Appendix 6: SAS Program Codes (Three Ingredients).......................................... 136 

Appendix 7: SAS Program Codes (Four Ingredients) ........................................... 137 

 

  



ix 

 

 

 

 

LIST OF TABLES  

Table 1: Support points for the three ingredients centroid design ............................... 48 

Table 2: Support points for the four ingredients centroid design ................................ 58 

Table 3: Numerical D-slope optimal weighted centroid designs ............................... 102 

Table 4: Numerical A-slope optimal weighted centroid designs ............................... 103 

Table 5: ANOVA for two ingredients Kronecker model........................................... 105 

Table 6: T-test Values for coefficients of the two ingredients Kronecker model ...... 105 

Table 7: ANOVA for three ingredients Kronecker model......................................... 109 

Table 8: T-test Values for coefficients of the three ingredients Kronecker model .... 110 

Table 9: ANOVA for the four ingredients Kronecker model .................................... 115 

Table 10: T-test Values for coefficients of the four ingredients Kronecker model ... 116 



1 

 

 

 

 

CHAPTER ONE 

1.0 Introduction 

This study deals with the exploration and optimization of response surface. This is a 

problem faced by experimenters in many technical fields, where in general the response 

of interest is affected by a set of predictor variables. Experiments are performed by 

investigators in virtually all fields of inquiry, usually to discover something about a 

particular process or system. 

An experiment is a test or a series of tests in which purposeful changes are made to the 

input variables of a process so that we may observe and identify the reasons for changes 

that may be observed in the output response. The objectives of the experiment may 

include determining: 

i. Which variables are most influential on the response 

ii. Where to set the independent variables so that the response is almost near the 

desired nominal value 

iii. Where to set the influential factors so that variability in response is small 

iv. Where to set the controllable factors so that the effects of uncontrollable factors 

are minimized. 

1.1 Response Surface Methodology 

Response Surface Methodology (RSM) is a collection of mathematical and statistical 

techniques that are useful for modeling and analyzing a problem in which a response of 

interest is influenced by several variables with the objective of optimizing this response, 

Montgomery (2001). The optimum value may be a maximum or minimum value 

depending on the problem at hand. In most RSM problems, the form of the relationship 

between the response and the independent variables is unknown. Thus the first step is 
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to find a suitable approximation for the true functional relationship between the 

response and the set of independent factors. Usually, a low-order polynomial in some 

region of the independent factors is employed. To fit polynomials to the response 

surfaces the researcher employs response surface designs. 

RSM is a sequential procedure. Often the exodus is a point on the response surface that 

is remote from the optimum. The objective is to lead the experimenter rapidly and 

efficiently along the path of improvement toward the general vicinity of the optimum. 

Once the region of the optimum has been found, a second-order model may be 

employed. Then an analysis is performed to locate the optimum. (Montgomery (2001)). 

The eventual objective of the RSM is to determine the optimum operating conditions 

for the system or to determine the region of the factor space in which operating 

requirements are satisfied. 

1.2 Mixture Experiments 

A mixture experiment is a special type of response surface experiments in which the 

factors are the ingredients or components of a mixture and the response is a function of 

the proportions of each ingredient. These proportional amounts of each ingredient are 

typically measured by weight, volume, mole ratio and so forth, Montgomery (2001). 

In general, suppose that the mixture consist of m  ingredients and let ix  represent the 

proportion of the ith  ingredient in the mixture. Then, we must require that 

mixi ...,,2,1,0   and 



m

i

ix
1

1 . The latter constraint makes the levels of the factors 

ix  interdependent as opposed to the usual response surface experiments where the 

factors are purely independent. The experimental region for a mixture problem is a 

simplex, which is a regularly sided figure with m  vertices in 1m  dimensions. Scheffe’ 
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(1958) laid the foundation for the development of mixture tools (design and models) by 

introducing the simplex lattice designs and their associated canonical polynomials. 

1.3 Simplex Designs 

Simplex designs or mixture designs are used to study the effects of mixture components 

on the response variable. A  mp,  simplex lattice design for p components consists of 

points designed by the following coordinate settings; the proportions assumed by each 

component take the (m+1) equally spaced values from 0 to 1, 

pi
mm

xi ...,,2,1,1...,,
2

,
1

,0  and all possible combinations (mixtures) of these 

proportions are used, Montgomery (2015). 

In general the number of points in a  mp,  simplex lattice design is 






 

m

mp 1
. In a 

simplex centroid design there are 12 p  points corresponding to the p permutations of 

(1, 0, 0, …, 0) pure blends, the 








2

p
 permutations of 








0...,,0,0,

2

1
,

2

1
binary blends, 










3

p
permutations of 








0...,,0,

3

1
,

3

1
,

3

1
ternary blends, …. and the overall centroid 










pppp

1
...,,

1
,

1
,

1
. See Scheffe’ (1963) for more details. 

The simplex factor space is a straight line for two factors. For three factors, the simplex 

factor space is an equilateral triangle. The coordinate system used for the values 

mixi ...,,2,1,0   is called simplex coordinate system. The geometric description of 

the factor space containing the m-components consists of all points on or inside the 

boundaries (vertices, edges, faces, etc.) of a regular (m - 1) dimensional simplex 
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After considering Scheffe’s designs, Murty and Das (1968) developed symmetric-

simplex designs. Saxena and Nigam (1973) came up with symmetric-simplex block 

designs for experiments with mixtures. Cornell (1975) proposed the use of axial 

designs. Axial designs comprise mainly of complete mixture or q - component blends 

where most of the points are positioned inside the simplex. An axial design’s points are 

positioned only on the components axes. The designs are useful when an inquest 

involves measuring component effects. 

In mixture experiments, the response is assumed to depend only on the relative 

proportions of the mixture components and not on the amount of the mixture, Cornell 

(2002). Cornell (2002) lists a number of the products where two or more ingredients 

are combined by ratio in order to obtain an end product.  

1.4 Weighted Centroid Designs 

An alternative to simplex-lattice designs are simplex centroid designs which were 

introduced by Scheffe` (1963). The jth elementary centroid design 

2},,...,1{,  mmjj  is the uniform distribution on all points taking the form, 





j

i

mk Te
j 1

1
 with mkkk j  211 . 

A convex combination, 



m

j

jj

1

)(   with mm T ),...,( 1   is called a weighted 

centroid design with weight vector   restricted by 1
1




m

i

i .  Weighted centroid 

designs are exchangeable, that is, they are invariant under permutations, see Klein 

(2004). The weighted centroid designs are a fundamental concept for this study. 
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1.5 Models for Mixture Experiments 

Mixture models contrast with the regular polynomials employed in response surface 

methodology because of the restriction, 1
1




m

i

ix  for a mixture of m ingredients. A 

major impact of this constraint being that the linear models do not have an intercept. 

Otherwise the regression coefficients cannot be estimated uniquely. Scheffé (1958) 

came up with acknowledged polynomials for simplex-lattice designs by altering the 

usual models in ix  by employing the ingredients condition, to have models without an 

intercept. It has to be appreciated that Scheffés polynomial models are sufficient for 

good systems. 

Draper and Pukelsheim (1998) came up with a set of regression functions for mixture 

experiments called Kronecker or K-models. These models are based on Kronecker 

algebra. Let )'...,,( 1 mttt   be an 1m  vector representing the ingredients in a mixture. 

The Kronecker square is an 12 m  vector of cross products jitt  arranged 

lexicographically as; 

 )'( 212221212111 mmmmmm tttttttttttttttttttt  .  

The symmetry is attained along with the replication of terms.  

K-models have outstanding symmetries and compacted representation and are 

consistent model functions. Draper and Pukelshiem (1999) and Prescott et al. (2002) 

lists numerous merits of the Kronecker model, in particular the similarity of regression 

terms and reduced ill-conditioning of information matrices. Any mixture experiment 

with projected response, when analyzed by means of K-models is homogeneous in 

ingredients.  
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1.6 Statement of the Problem 

Blend experiment strategy procedures are presented by Cornell (2002) for simplex and 

polyhedral regions. Subsequent to selecting appropriate design and performing mixture 

experiments, is fitting models used to screen the components, predict response(s), 

determine ingredients effects on the response(s), or optimize the response(s) over the 

experimental region.  

Scheffé (1958) came up with linear mixture model in which the coefficient estimate for 

a component is the predicted value of the response for that pure component. Darroch 

and Waller (1985) presented D-optimal axial designs for quadratic and cubic additive 

mixture models. Snee and Marquardt (1974) and Chan et al. (1998) compared the 

saturated D-optimal axial design and D-optimal design for the quadratic model on the 

basis of their efficiency and uniformity. Cox (1971) suggested a linear mixture model 

in which the coefficient estimate for an ingredient is the projected difference in the 

response at the pure ingredient and a pre-specified reference mixture. Component Slope 

Linear Mixture (CSLM) regression function was postulated by Greg (2007). In the 

CSLM model, the coefficient parameter for an ingredient is the estimated gradient of 

the response surface in the Cox effect direction for the ingredient. Wambua et. al. 

(2017), presented optimal values for the Slope Optimal Design for Second Degree 

Kronecker Model Mixture Experiment with three factors for a maximal parameter 

subsystem with the interaction parameter is scaled by two. From the reviewed literature 

there lacks information on optimal slope designs for the second degree Kronecker 

model mixture experiments for maximal parameter subsystem where the interaction 

coefficient is scaled by the number of ingredients in the model. This study sought to fill 

this knowledge gap. Thus the concept of slope was extended to second degree 

polynomial regression and choice of optimal designs. The information matrices are 
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directly linked to slope matrices to derive the slope optimal information for the 

weighted centroid designs.  

1.7 General Objective 

The overall objective of the study was to determine optimal slope designs for second 

degree Kronecker model mixture experiments with application in juice blending using 

selected fruits. 

1.8 Specific Objectives 

The specific objectives of the study were to:  

(i) Derive equivalence theorem for existence of p   optimal slope mixture 

designs. 

(ii)  Derive optimal slope weighted centroid designs for second degree Kronecker 

model for mixture experiments for the D- and A-optimality criteria. 

(iii) Obtain numerically p  optimal slope weighted centroid designs for the 

maximal parameter subsystem. 

(iv)  Demonstrate the practical use of optimal slope weighted centroid design to 

analyze data from a designed experiment on fruit blending. 

1.9 Research Questions 

The study was guided by the following research questions: 

i) What is the equivalence condition for the existence of optimal slope mixture 

designs? 

ii) Are there D- and A- optimal slope weighted centroid designs for the second degree 

Kronecker model mixture experiments? 
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iii) Can the proposed Kronecker model adequately describe blended juice quality 

data? 

1.10 Research Hypotheses 

The study demonstrates the application of the Kronecker model in describing the 

response (attributes of interest) describing juice quality based on personal preference. 

The data must be assessed for compliance to model requirements and the model be 

tested on whether it adequately describe the response. The following null hypotheses 

were thus tested: 

i) The juice blending data are not normally distributed  

ii) The Kronecker model does not adequately describe the response in the juice 

blending data 

iii) The Kronecker model regression parameters that describe the response in the juice 

blending data are not significant 

1.11 Scope of the Study 

In recognition of the strong property that the class of weighted centroid designs is 

essentially complete (Klein (2004)), the study was restricted to weighted centroid 

designs, with the second degree Kronecker model as put forward by Draper and 

Pukelsheim (1998). We present a group of weighted centroid designs and characterize 

the feasible weighted centroid designs for the maximal parameter subsystem for the 

mixture regression equation with two or more ingredients. After obtaining the feasible 

weighted centroid designs, the slope information matrices of the designs are obtained. 

D- and A-optimal slope weighted centroid designs are then derived from the 

information matrices with the help of the equivalence condition. The study also 
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demonstrates the use of the Kronecker model in describing the sensory attributes of 

blended juice from selected fruits. 

1.12 Significance of the Study 

Many blends are mixtures of different ingredients. In these mixtures the response is 

dependent on the ratio of the ingredient in the blend. Mixture experiments are often 

conducted to come up with product formulations with desirable or optimum responses. 

A mixture experiment involves mixing the ingredients in various proportions within a 

composition region of interest and recording the response(s) for each mixture. The 

ingredients are presumed to affect the response only through the proportions in which 

they are mixed. Competing designs arise. This study puts forward optimal slope designs 

for use in describing dependent factor(s) in mixture experiments. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction 

This chapter reviews the relevant theoretical and empirical literature applicable to the 

study  

2.1 Response Surface Designs 

Response Surface Methodology (RSM) was established by Box and Wilson (1951) to 

help in the enhancement of manufacturing procedures in the chemical industry. In RSM 

mathematical and statistical tools are used formulate models and analyze data from 

experiments with intensions of gaining optimal the response, Montgomery (2015). A 

mixture of factors impacts the response through the ratios in which they are blended 

together. The response is a measurable quality or property of interest on the product. In 

this study it is assumed that, the experimenter can measure quantities of the ingredients 

in the mixture accurately. It is further assumed that, the responses are functionally 

related to the blend composition and that, by varying the composition through the 

changing of ingredients amounts, the responses will also vary. The experimenter’s 

motives to studying regression equations linking the response and the controllable 

factors are to; 

i. determine whether some combination of the factors can be considered best in 

some sense 

ii. gain a better understanding of the overall system by studying the roles the 

different factors in the system. 

Classical experimental designs deal with comparative experiments where effects of 

various treatments are compared and estimation of treatment contrasts done. On the 
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contrary, for response surface designs, treatments are various combinations of different 

levels of the factors that are quantitative. Here the main objective of the experimenter 

is to estimate the absolute response or the parameters of a functional relationship 

between the response and the ingredients.  

Rotatable designs (like weighted centroid designs) have the good characteristic that the 

variance of the estimated response is constant at points equidistant from the centre of 

the factor space after transformation when required. Rotatable designs generate data 

from the response surface that are equally spaced in all directions and are therefore 

useful when no or little knowledge is available about the nature of the response surface. 

The class of rotatable designs is also very rich in the sense that under many normally 

employed criteria, the optimal designs for polynomial regression functions over 

hyperspherical regions may be found within this class, Kiefer (1960). 

Draper and Pukelshiem (1999) studied the Kiefer design ordering of simplex designs 

for first and second degree mixture models by discussing the improvement of a given 

design in terms of increasing symmetry as well as finding a larger moment matrix in 

the Loewner ordering of matrices. The two criteria collectively explain the Kiefer 

design ordering. Draper and Pukelshiem (1999) prove that for the second-degree 

mixture model, the set of weighted centroid designs form a convex complete class for 

the Kiefer ordering. For four ingredients, the class is minimal complete and for at least 

five ingredients, the set of weighted centroid design is complete. Klein (2004) presented 

optimal weighted centroid designs for second degree Kronecker model mixture 

experiments. 

Chan (2000) presented analytical and numerical results of optimal designs for various 

regression equations for experiments with mixtures. Cornell (2002) availed a 



12 

 

 

 

 

remarkable result on study of designs and alternative model forms. Prescott (2008) 

demonstrated the use of nearly uniform designs to model mixture experiments.  

In many designed experiments, resources constraints often force certain factors to be 

much harder to change than others. A good method to this constrains randomization 

thereby forming a split-plot structure. Geoffrey, et al. (2018) showed how the common 

central composite design can be modified to accommodate the split-plot structure. They 

also established conditions to make ordinary least squares and weighted least squares 

estimates similar. The consequence is that standard experimental design software can 

be used to analyze second-order response surfaces. 

In response surface experiments, the principal interest is on prediction compared with 

parameter estimation since the points on the fitted surface are predicted responses. In 

choosing optimal designs, it’s important to concentrate on predictive competence of the 

designs, Bradley J. and Peter Goos (2017). Lee et al. (2006) utilized response surface 

methodology to optimize the enzymatic interpretation process of banana juice. 

Mukesh, et al. (2016) employed RSM involving Box-Behnken Design to optimize 

process coefficients in production of an extracellular acidic pectin methylesterase on 

dried papaya peel under solid state fermentation. Rahul, C. et al. (2018) employed RSM 

to investigate parameters in transesterification experiment. Olusola, et al. (2019) 

demonstrated use of RSM in optimizing coagulation process of surface water using 

Moringa Oleifera seed. Mert Gülüm et al. (2019) relied on concepts in RSM in 

determining optimum reaction parameters to model biodiesel production process 

mathematically. 
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2.2 Optimal Designs 

The exodus of development of optimal designs for regression problems can be traced 

to Smith (1918). Kiefer (1959) formulated computational steps necessary for selecting 

optimum designs in regression problems of statistical inference. Cornell (1975) 

introduced the concept of axial designs which are very useful when measuring the 

effects of the components. Snee and Marquardt (1974), discussed the usefulness of 

extreme vertices designs in experimentation with mixtures when the response surface 

is well captured by a linear model. Chan et al. (1998) considered D-optimal axial 

designs for quadratic and cubic additive mixture functions which were invented by 

Darroch and Waller (1985) and compared the saturated D-optimal axial design and D-

optimal design for the quadratic model in relation to their efficiency and uniformity.  

Prescott and Draper (1998) deliberated the case when the researcher is not able to 

explore the entire simplex due to the additional upper and lower bound constraints 

imposed on factors in the mixture for Scheffé’s quadratic equation. Prescott and Draper 

(1998) remedied the predicament by proposing D-optimal orthogonal block designs and 

demonstrated how to simplify the restricted region using pseudo components by 

developing designs for the specifics scenario where the lower bound is located at the 

origin for all but one ingredients. Aggarwal and Singh (2006) found D-optimal designs 

in two orthogonal blocks for Darroch and Waller’s (1985) quadratic model in 

constrained mixture blends. 

Hilgers (2000), Cornell (2002) and Hilgers and Heiligers (2003) described various 

situations where Becker (1968) three mixture models were employed and emerged a 

better fit than the polynomial models. Aggarwal et al. (2013) present D-, A- and E-
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optimal orthogonal block designs for four mixture components in two experimental 

conditions for Becker’s models and K-model. 

Chan et. al. (1998a) introduced A-optimal weighted simplex-centroid designs for 

Darroch and Waller‟s (1985) quadratic polynomial model. Chan et al. (1998b) obtained 

D-optimal saturated axial designs for quadratic and cubic additive mixture models. 

Aggarwal et. al. (2008) studied orthogonal blocking of blends for Darroch and Waller’s 

quadratic model using F-squares in some components which assume equal volume 

fraction. Aggarwal et. al. (2008) have also given the D-, A- and E-optimalities of the 

different designs with four ingredients.   

Yuanzhi, et al. (2019), advanced original multistage optimization procedure to 

construct D-optimal designs. This involved a two phased protocol. First was to device 

conventional point and co-ordinate exchange algorithm. Second, to develop a unique 

multistage optimization process to construct D-optimal designs. They also applied their 

designs to experiments with non-linear regression models. 

2.3 Optimal Slope Designs  

It is imperative to recognize that in response surface designs the main interest of the 

experimenter may not be limited to the response at distinct points. Sometimes, the 

differences between the responses at various locations may be the key interest 

(Herzberg (1967), Box and Draper (1980), Mukerjee and Huda (1985) and Huda 

(2006a).  

If focus is in the difference between responses at points close together in the factor 

space, the estimation of instantaneous slopes of the response surface becomes crucial. 

Estimation of slopes is particularly pertinent when the researcher intends to establish 

optimal settings of the factors so as to realize the optimal value of the response. 
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Atkinson (1970) introduced research into designs for estimating slopes. Subsequently, 

Ott and Mendenhall (1972), Murty and Studden (1972), Myers and Lahoda (1975), 

Mukerjee and Huda (1985) later contributed concepts geared towards realization of 

optimal design of experiments for estimating slopes. A detailed appraisal of the past 

studies in this field is provided in Huda (2006b). 

Alam, et al. (2014) developed two methods of constructing multifactor mixture 

experiments. First, they developed an algorithm for constructing efficient designs with 

few support points using Kronecker product of single factor mixture designs. Secondly, 

they constructed multifactor designs using Kronecker sum of matrices for designs 

where all the factors have equal number of ingredients. They demonstrated how the 

developed designs can be utilized to fit second order model. 

Rabinda N. Das, et al. (2015) gives an elaborate discussion and analysis of robust slope-

rotatable designs. Huda and Benkherouf (2016) utilized the D-minimax criterion to 

derive optimal designs of experiments focusing on estimation of slope of a response 

surface. Huda and Fatemah (2019) employed the minimax criterion to maximize 

variance of slope at a point over all design points to estimate slope of response surface. 

Huda and Fatemah (2019) explored the efficiencies of exact optimal designs under the 

minimax criterion. 

Mitra, et al. (2020) utilized RSM simulations with bed slopes, attack angle and drift 

angle as key factors to analyze the hydrodynamic performance of autonomous 

underwater vehicles. Rajyalakshmi and Victorbabu (2018), constructed a second order 

slope rotatable design tri-diagonal correlated errors by means of symmetrical unequal 

block arrangements with two unequal block sizes. 
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Many practical problems relate to investigation of a mixture of m ingredients, presumed 

to impact on the response only through the amounts in which they are blended together. 

The m factors, t1, t2, …, tm are such that ti≥0 and subject to the simplex constriction 





m

i

it
1

1 . The conclusive text by Cornell (1990) provides plentiful examples and give 

a thorough discussion of both theory and practice. Earlier study by Scheffe’ (1958, 

1963) recommended and analyzed recognized model forms when the regression 

equation for the predictable response is a polynomial of degree one, two or three. 

Scheffé (1958) devised undisputed polynomials for simplex-lattice designs by adjusting 

the normal models in ix  with the help of the simplex limitation 1
1




m

i

ix . For instance, 

a linear model for three factors whose quantities are symbolized by 1x , 2x  and 3x . The 

expected linear response is, 

3322110)( xxxyE   . ………………………………………………….(2.1) 

With the simplex restriction, the intercept can be written as,  

)( 32100 xxx   . ……………………………………………………………(2.2) 

This then implies that (2.1) becomes; 

332211330220110 ''')()()()( xxxxxxyE   , ……………..(2.3) 

 so that the intercept is removed from the model. 

Scheffe’ (1958) proposed a second order model; 




 


1

1 11

)(
m

i

m

j

jiij

m

i

ii xxxyE  ……………………………………………………(2.4) 
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It has to be appreciated that Scheffé’s polynomial models are satisfactory for good 

systems. 

Let 1m=(1, …, 1)' m  be the unity vector. Thus the experimental conditions t=(t1, t2, 

…, tm) with ti≥0 of a mixture experiments are points in the probability simplex,  

   11:]1,0[...,,, 21 





 tttttT m

m

mm ….…………..………………...(2.5) 

Under experimental conditions, mTt , the response tY  is taken to be a scalar 

randomvariable. Replications under similar conditions and responses from separate 

experimental settings are taken to be of equal (unknown) variance and independent. 

An experimental design τ on the experimental domain mT  is a probability measure with 

a finite number of support points. If τ assigns weights w1, w2, … to its points of support 

in mT  , then the experimenter is instructed to draw proportions w1, w2, … of all 

observations under the respective experimental settings. 

Draper and Pukelsheim (1998) suggested the second-degree Kronecker model as an 

adequate polynomial regression model for mixture experiments. Its regression equation 

is, 

,)...,,,(;: 21

2

jim

m

m ttttttttTf   i,j=1, …, m, …………….....(2.6) 

with the index pairs (i, j), 1≤i<j≤m ordered lexicographically. The equation is a smooth 

functional relationship: 






m

ji
ji

jijiij

m

i

iiit ttttfYE
1,1

2
)()()(  …………………………..……………(2.7) 

where tY , the response under experimental condition 
mTt , is taken to be a real-valued 

random variable and 
2

)...,,,( 1211

m

mm    an unknown parameter. All 
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observations taken in an experiment are assumed to be independent and to have constant 

variance σ² (0, ∞). 

Draper and Pukelsheim (1998) put laid down merits of the Kronecker model. 

Particularly that it has a more compact notation, more convenient invariance properties 

and the homogeneity of regression terms.  The Kronecker model also has reduced ill-

conditioning of information matrices as revealed by Draper and Pukelshiem (1999) and 

Prescott et al. (2002). The moment matrix 


 dtftfM )'()()(  for the Kronecker 

model of degree two has all entries homogeneous of degree four. This matrix reflects 

the statistical properties of a design τ.  

Pukelsheim (1993) examines the general design environment. Klein (2004) asserts that 

the class of weighted centroid designs is fundamentally complete for a design with at 

least two factors for the kiefer ordering. Cheng, S. C. (1995) presented results for 

moment matrices of designs over permutation invariant groups that showing the group 

is a complete set. Consequently, the search for optimal designs may be limited to 

weighted centroid designs for most criteria. For specific criteria applied to mixture 

experiments see Kiefer (1959, 1975, 1978). Galil and Kiefer (1977) compared simplex 

designs for second degree mixture models. 

Weighted centroid designs were presented by Scheffe’ (1963). These designs are 

exchangeable and hence invariant under permutations as proven by Klein (2004). 

Klein (2004) abridged the work by Draper and Pukelsheim (1999) and Draper, Heiligers 

and Pukelsheim (2000) by a concept that asserts the importance of weighted centroid 

design for the Kronecker model. The researcher demonstrated that, in the second degree 

Kronecker model for mixture experiments with at least two factors, the class of 
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weighted centroid designs is a fundamentally complete class. That is, for every p[-

;1] and for every design   there exists a weighted centroid design   with 

).)(())((  MCMC kpkp    

Thus for every design   there is a weighted centroid design   with a moment 

matrix M( ) improved upon M( ) in the kiefer ordering. See also Draper, Heiligers 

and Pukelsheim (1998). 

Under the kiefer ordering, a moment matrix M is said to be more informative than a 

moment matrix N if M is greater than or equal to some intermediate matrix F under the 

loewner ordering, and F is majorized by N under the group that leaves the problem 

invariant: 

                      M>>N   M>>FN for some matrix F. 

Two moment matrices M and N are said to be kiefer equivalent when M>>N and 

N>>M. We call M kiefer better than N when M>>N without M and N being equivalent. 

A design   is kiefer better than a design   if and only if M( ) is kiefer better than M(

 ). 

For the information matrix obtained, the matrix is an improvement of a given design in 

terms of increasing symmetry and that it is a larger moment matrix under the loewner 

ordering. These two criteria demonstarte that the information matrix realized is kiefer 

optimal for K , the parameter subsystem of interest. 

2.4 General Design Problem 

The problem of discovering a design with maximum information on the parameter 

subsystem K  can be expressed as; 
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Maximize ( ( ( )))p kC M   with T   

Subject to TsPDMCk   )())((
 

where T denotes the set of all designs Tm and  )(sPD denotes the set of ss   positive 

definite matrices. The side condition )())(( sPDMCk   is equal to the existence of an 

unbiased linear estimator for K  under 𝜏, Pukelsheim (1993). In which case, the 

design 𝜏 is said to be feasible for K . Any design solving the problem above for a fixed 

p∈ (-∞, 1] is called optimalp 
 
for K  in T. For all p∈ (-∞, 1], the existence of 

optimalp 
 
design for K is guaranteed by Theorem 7.13 in Pukelsheim (1993). 

The formulation allows for estimation of the maximal parameter subsystem that is 

unbiased. It also then points to the existence of optimal slope designs with the 

necessary adjustments to the information matrices to include the slope aspect. 
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CHAPTER THREE 

METHODOLOGY 

3.0 Introduction 

Mixture experiments are allied with the examination of the m factors, assumed to 

influence the response only through quantities in which they are blended together. 

The mixture ingredients t1, t2 … tm are such that ti ≥0 and further restricted by

 1it . Thus the experimental region is the probability simplex,









 


1:]1,0[)...,,(
1

1

m

i

i

m

mm ttttT . 

Under experimental condition mTt , the response tY  is taken to be a real-valued 

random variable. In a polynomial regression model the expected value of the 

response )( tYE  is a polynomial equation in t. 

3.1 Equivalence Theorem 

The equivalence theorem provides the necessary and sufficient conditions for the 

existence of p   optimal slope mixture designs. The assertion of the theorem statement 

is that a weighted design  )(  is optimalslopep   for K  in T if and only if; 

     









otherwiseHCtraceH

jallforHCtraceH
HCCtraceH

p

p

p

j

00

00

0

1

0

)(
 , ……………………….(3.1) 

with proper definition of information matrices C  and adjusted slope matrix 0H  was 

proven by employing the properties of symmetric matrices. The information matrices 

involved are a linear mapping, therefore taking trace as the information function, the 

theorem was algebraically demonstrated.   
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To prove the equivalence theorem, sufficient conditions available from the following 

two theorems are applied. 

Theorem 3.1 

Let mT  be the weight vector of a weighted centroid design )(  which is feasible 

for 'K and let  )0:,,2,1()(  jmj   , be a set of active indices. Furthermore, 

let )))((( MCC k  and ]1,(p . Then )(  is optimalp   for K  in T if and 

only if; 

    











otherwisetraceC

jallfortraceC
CCtrace

p

p

p

j

)(
1


 

Proof 

 Kinyanjui (2007), gives the elaborate proof ▪ 

Theorem 3.2 

Let )1,(p and )(  with mT  be a weighted centroid design that is 

optimalp   for K  in T. Then the following assertions hold: 

i. If }2,1{)(   , then there is no further design T  that is optimalp   for 

K  in T, that is, )(  is the unique. 

ii. If }3,2,1{)(   , then there is no further exchangeable design T that is 

optimalp   for K  in T.   

iii. If there is a non-exchangeable design which is optimalp   for K , then all 

its support points are centroids of depths 1, 2 or 3. 
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Proof 

Klein (2004) postulated and proved the theorem▪ 

A consequence of this theorem to this study is that we restricted the work to the first 

two centroids  1  and 2 , hence derived weighted optimal slope designs that are unique. 

3.2 Optimal Slope Weighted Centroid designs 

This section presents the tools and methods that were engaged to derive optimal slope 

weighted centroid designs for the A- and D-optimality criteria. 

3.2.1 Slope Information matrices 

The basic model for this study is the second degree Kronecker regression model. For 

this model the full parameter vector is not estimable, basically due to the redundancies 

introduced by repetition of terms. A coefficient matrix was employed to select a 

maximal parameter sub vector. The coefficient matrix was derived by employing 

unique relations of vectors formed from Kronecker products of canonical vectors. 

Hence a need to demonstrate how the Kronecker products are performed.  

The statistical properties of the designs are captured in moment matrices. Finally, the 

slope information matrices are formed from liner combinations of the moment matrices 

and adjusted slope matrices. The tools employed to come up with these matrices are as 

follows: 

3.2.2 Support Points of a Simplex Centroid Design 

In a simplex centroid design with m ingredients, there are 12 m
 points of support. The 

points corresponds to the m permutations of (1, 0, 0, …, 0) pure blends, the 








2

m
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permutations of 







0...,,0,0,

2

1
,

2

1
binary blends, 









3

m
permutations of 








0...,,0,

3

1
,

3

1
,

3

1

ternary blends, …. and the overall centroid 








mmmm

1
...,,

1
,

1
,

1
, Scheffe’ (1963)….. (3.2) 

The jth elementary centroid design j , j{1, …, m}, m≥2 is the uniform distribution 

on all points taking the form 

m

j

i

kj i
e 

1

1  with 1≤k1<k2< … <kj≤m. ……………………………………..…….(3.3) 

A convex combination, 



m

j

jj

1

)(  , with mm  )',...,( 1  , is called a weighted 

centroid design with weight vector  restricted by 



m

i

i

1

1 .  

3.2.3 Kronecker products 

The Kronecker product of a vector ms   and another vector nt   is a vector of 

order mn,     

              
orderhiclexicograpin

njmiji

m

mnts

ts

ts

ts




















,...,1,,...,1

1

)(   ………………………………… (3.4) 

This study utilized the canonical unit vectors in m  denoted by mee ,...,1 . The vector 

ije  is taken as the Kronecker product of the vectors ie and je , for },...,2,1{, mji  . The 

canonical vectors in 










2
m

 are denoted by Eij, ordered lexicographically according to 

their indices 
2},...,2,1{),( mji   with i<j. 

The model around which the study revolves is the second degree Kronecker model with 

expected response: 
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m

ji
ji

jijiij

m

i

iiit ttttttfYE
1,1

2
)()()()(  . ………..…(3.5) 

where tttf )(  and unknown parameter vector, 

2

)...,,,( 1211

m

mm   .  

The whole parameter vector for the model is not estimable. This necessitates the 

estimation of selected parameters from the whole vector. The study selected the 

maximal parameter subsystem of interest with the use of coefficient matrix. 

3.2.4 Coefficient Matrix 

Let mee ,...,1  denote the unit vectors in m  and Eij denote the canonical vectors in 










2
m

 

that are ordered lexicographically according to their indices 
2},...,2,1{),( mji   with 

i<j. The unit vector ije  is for this study the Kronecker product of the unit vectors ie and 

je , for },...,2,1{, mji  .  

The coefficient matrix K that aided in selecting a maximal parameter subsystem for the 

Kronecker regression function with a fixed number of ingredients, was defined as; 

          







 



2

1

21

2

),(

m
m

KKK , ………………….………………………………(3.6) 

where; 

   



m

i

iiieeK
1

1  ……………………………..………………………………(3.7) 
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and 

  




m

ji
ji

ijjiij Eee
m

K
1,

2 )(
1

…………………..………………………………(3.8) 

The matrix K is of full column rank. The parameter subsystem K  of the model (3.5) 

considered in this study can be written as; 








 























 2

1

1

1

),(
1

)( m

mjijiij

miii

m

K




  for all 
2m  and 2m .     ………………(3.9) 

3.2.5 Moment Matrix 

An experimental design   is a probability measure on the experimental domain with a 

finite number of support points. Each support point ssupp(τ) directs the experimenter 

to take a proportion T({t}) of all observations under experimental condition T. The 

statistical properties of a design are reflected by its moment matrix: 

                             )()'()()( 2mNNDdtftfM  


 ,    ………………………(3.10) 

 where, NND(m²) denotes the cone of nonnegative definite m²×m² matrices. The entries 

of M(τ) are fourth moments of τ, since the regression function f(t) is purely quadratic.  

The unique moments of order four are, for j=1, 2, …, m: 

mj
j 34

1
)(  ,  

)1(

1
)()(

32231





mmj

j
jj   and 

)2)(1(

)2)(1(
)(

3211





mmmj

jj
j …..(3.11) 

3.2.6 Information matrix  

In many applications of response surface methodology, good estimation of 

derivatives of the response function may be as important or perhaps more important 

than estimation of the mean response. We know that to maximize the response, the 
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movement of the design center must be in the direction of the directional derivatives 

of the response function, that is, tY

t




. Certainly the computation of a stationary 

point in a second-order analysis or the use of gradient techniques for example, the 

steepest ascent of ridge analysis relies on the partial derivatives of the estimated 

response function with respect to the design factors. Since the designs that achieve 

certain properties in Y (estimated response) do not enjoy the similar properties for 

the estimated derivatives (slopes), we reflect on experimental designs that are 

constructed with derivatives in mind. 

In practice, frequently we are concerned with investigation the slope of the response 

surface at a point t , not  only over the axial directions, but also over any indicated path. 

We established the concept of robust slope over all directions. Define D, a matrix 

derived by differentiating the function ( )f t   with respect to each of the m independent 

factors, (see Sung. et al (2009)). That is; 

                    
























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...,,

)('
,
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21

,   where, tttf )( .  ……………(3.12) 

Define also an 
1

2

m
m

 
 
 

,  adjusted slope matrix 

                                       0H DK      …………………………… …………….(3.13) 

The amount of information a design t  contains on K’  is contained in the information 

matrix: 

                Ck(M(τ))=min{LM(τ)L’ | L
2

2

1
m

m







 
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


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1m
I } ………………(3.14) 
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Where 







 

2

1m
I  denotes the 







 







 

2

1

2

1 mm
 identity matrix and L is the left inverse of 

K defined as,  

             KKKL  1)( . ………………………………………………………..(3.15) 

The above minimum is interpreted relative to the Loewner ordering on the space 


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1 mm
 matrices, defined by BA   if and only 

if AB  is nonnegative definite.  

The information matrix Ck(M(τ)) is the precision matrix of the best linear unbiased 

estimator for K’θ under design τ, see Pukelsheim (1993, chapter 3). The information 

matrices for K’θ takes the form: 

                



















 


2

1
)(0

m
NNDLLMc   ...........................................................(3.16) 

where KKKL  1)( .  

To get the information matrix for the design )(  we used the  linear function;       

    ))(())(()))((( 22110  MCMCMCC kkk  ………………..…………(3.17) 

where 

     LLMMC jjk
 )())((   ……………………………………………………(3.18) 

is the information matrix for the jth centroid. 

Thus the information matrices for K’θ are linear transformations of the moment 

matrices. 

Then, we consider optimizing for a particular criterion the slope information matrices 

for K’θ of the form: 

                  )(000 mNNDHCHC   .………….....................................................(3.19) 
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3.2.7 Optimal Slope Weighted Centroid Designs 

The problem of discovering a design carrying maximum information on the parameter 

subsystem 'K  can be formulated as; 

Maximize p (Ck(M(τ))) with τТ 

Subject to Ck(M(τ)) PD(m) …..…………………….(3.20) 

where T denotes the set of all designs Tm. The side condition )())(( mPDMCk  is 

equal to the existence of an unbiased linear estimator for K  under 𝜏, Pukelsheim 

(1993). In which case, the design 𝜏 is called feasible for K . Any design solving 

problem (3.20) above for a fixed ]1,(p  is called optimalp 
 
for K  in T. For 

all ]1,(p , the existence of optimalp 
 

design for K is guaranteed by  

Theorem 7.13 in Pukelsheim (1993).   

The formulation allows for estimation of the maximal parameter subsystem that is 

unbiased. It also then points to the existence of optimal slope designs with the necessary 

adjustments to the information matrices to include the slope aspect. 

Suppose )( satisfies the side condition Ck(M(τ)) PD(m) and write Cj=Ck(M( j ) ) 

for j=(1, 2, …, m). For all ]1,(p , )(  solves problem (3.23) if and only if; 

     









otherwiseHCtraceH

jallforHCtraceH
HCCtraceH

p

p

p

j

00

00

0

1

0

)(
  ………………………(3.21) 

Weighted centroid designs are exchangeable, that is, they are invariant under 

permutations of ingredients. This fact considerably simplifies the solving of optimality 

condition (3.20). The set of weighted centroid designs is a convex complete class 

relative to Kiefer ordering.  
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3.2.8 Optimality Criteria 

The most prominent optimality criteria in the design of experiments are the determinant 

criterion 0 , the average-variance criterion -1, the smallest eigenvalue criterion   and 

the trace criterion 1 . These are a particular cases of the matrix means p with parameter 

p[- ;1]. 

The optimality properties of designs are determined by their moment matrices 

(Pukelsheim 1993, chapter 5). We computed optimal design for the polynomial fit 

model, the second degree Kronecker model. This involved searching for the optimum 

in a set of competing moment matrices. The matrix mean p  which is an information 

function (Pukelsheim (1993)) was exploited in this study. 

The amount of information innate to C(M( )) is provided by kiefers p -criteria with  

C(M(τ)) PD(m). These are defined by: 

                           

 















}0{\]1;[

0)det(

)(

)(

1

min
1

piftraceC

pifC

pifC

C
pp

m

p
m



  ………………(3.22) 

for all C in PD(m), the set of positive definite m m  matrices, where  min(C) refers to 

the smallest eigenvalue of C. By definition p (C) is a scalar measure which is a 

function of the eigenvalues of C for all p[- ;1]. (See, Pukelsheim 1993, chapter 6). 

For optimal slope designs we considered optimizing the information matrices of the 

form 000 HCHC  . The class of p -criteria includes the prominently used T-, D-, A- 

and E-criteria corresponding to parameter values 1, 0, -1 and -∞ respectively.    

Defining the group  
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,  for all m   where 

    ji  ,  denotes the pair of indices  i ,  j  in ascending order, and m denotes the 

symmetric group of degree m. The set H is a subgroup of perm 
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 permutation matrices and is isomorphic to m . This group acts on the 

space 

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









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

 
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1m
sym  through congruence transformation. The group perm(m) of mm  

permutation matrices acts on the set T of designs through ( R ,τ) 1 RR   . The 

direct implication of exchangeability of weighted designs is that, for any design T  

then R   for all )(mpermR . The equivalence property:                     


    HMCHRRMRRCMC kk

R

k )())(()())(( ………...…….(3.24) 

for all m  and    links the action of H on Ck(M(τ)) to the action of perm(m) 

on T (see Klein 2002). This now means that the information matrices involved in this 

study lie in the quadratic subspace  Hmsym ,  of H-invariant symmetric matrices 

defined as: 

                    HHallforCHHCmsymCHmsym  000 ':,  

This group is closed under formation of matrix powers nC  with n . A particular 

case of the quadratic subspace of 

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2

1
 is analyzed in Koske and Kinyanjui 

(2007).  
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It is possible to obtain a characterization of feasible weighted centroid designs for the 

parameter subsystem 'K  of interest since the set of weighted centroid designs is a 

convex complete class relative to Kiefer ordering. 

3.3 Numerical Optimal Slope Weighted Centroid Designs 

We generated numerical p optimal slope weighted centroid designs for the A- and 

D- criteria for ]20,5[m . These were based on the general expressions for the weight 

vectors and optimal values for each case of a design with m ingredients. The 

information matrices were explored in the context of the properties of the feasibility 

cone in which they are contained.  

3.3.1 The Quadratic Subspace  Hssym ,  

Since H is a subgroup of the permutation matrix group, H-invariance of a matrix 

 ssymC  means that certain entries of C coincide. The following lemma describing 

the linear structure of ),( Hssym , ( 






 


2

1m
s ), shows that an H-invariant symmetric 

matrix has at most seven distinct elements. 
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Then any matrix  HssymA ,  can distinctively be represented in the form 
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………………………………..(3.25) 

With coefficients ga ,, . The terms containing V2, W2 and W3 only occur for 

3m  and 4m  respectively, Klein (2004). 

In particular,  

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Hssym . 

The information matrices for the designs studied definitely belongs to this space. 

The matrix (3.25) can be partitioned according to the block structure,  
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information mapping A, we have, for every mT , 
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jkjk MAMA ,…………………..……….…..……….(3.25b) 

with }0:,...,2,1{)(  jmj  . 
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Since the information matrices )( jkj MAA   are non-negative definite, this implies; 





)(

)())))((((



j

jk AMA . 

The above equation suggests studying the ranges of the information matrices; A1, A2, 

…, Am of the elementary centroid designs. These matrices can be calculated by 

invoking the linear transformation to moment matrices )( jM   given by Draper, 

Heiligers and Pukelsheim (2000). 

For j=1,2, …, m, we obtain 

              











 


jj

jj

j AA

AA
A

,22,21

,21,11
………..……………………………………..........(3.25c) 

with blocks 

233,11
1

111
U

m

j

mj
I

mj
A mj




 , 2313,21

2

2

1

12

1

12
V

m

j

m

j

mj
V

m

j

mj
A j













  and  

3323

2

3,22
1

3

2

2

1

14

2

2

1

24

1

14
W

m

j

m

j

m

j

mj
W

m

j

m

j

mj
I

m

j

mj
A

mj



































,………(3.25d) 

3.3.2 Multiplication Identities for Information Matrices 

Multiplication identities of the matrices in Quadratic Subspace  Hssym ,  are as 

follows: 

(i) Products in },{ 21 UUspan  
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(ii) Products in },{ 21 VVspan  
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(iii) Products in },,{ 321 WWWspan  
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(Results available from Klein (2004)). 

3.4 Sensory Evaluation Experiment 

The designs developed were employed in assessing the sensory attributes of various 

mixtures of juices. The mixtures were formulated using two, three and four ingredients. 

The ingredients actually refer to the different selected fruits making the mixture. The 

attributes focused on were texture, colour, taste and smell. The rating of the attributes 

was based on a 15-point scale.  

The candidates involved were first taken through a training on how to taste and assign 

distinct scores on the various attributes. This was done to prepare them for the task and 

guide them on how to objectively assign scores on the various samples (juice blends) 

one tasted. In between samples the candidates rinsed the mouth using distilled water. 
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This basically was to clean the mouth, so that the attributes of one sample do not 

influence the ratings of the subsequent sample.  

After training, a pilot experiment was conducted to ascertain the effectiveness of the 

procedure for mixture preparations and efficiency of the data collection tool, the 

questionnaire, as well as to ensure that it was sufficient. After the pilot experiment, 

necessary adjustments were made on the preparation procedure and the construct of the 

questions on the questionnaire. The participants were required to sign a consent 

validating their willingness to voluntarily take part in the study.  

Then the experiment was conducted as follows: Pure blends of juices were prepared 

for the fruits involved. Then variations were then made on the blend formulations using 

the ratios as directed by the appropriate support points for the design. The amounts to 

be tasted, ‘samples’ were put in clear containers since colour was one of the attributes 

scored. The designs involved have finite support points, a decision was made on the 

eventual sample size. Each formulation was replicated four times. This was done to 

allow for the estimation of error and improve on the precision of estimates.  Then the 

participants were availed samples to taste that bore labels that they noted on the 

questionnaires. The labels represented specific formulations only known to the 

technical assistants and the lead researcher who supervised the conduct of the 

experiment.  

Randomization was actualized at the point of entry of the participants and in placing 

the samples on the benches. This was done to ensure that the observations were 

independent within and between formulations (mixtures/juice blends/samples). The 

participants were not made aware of the composition of the mixtures. 
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3.4.1 Model Validity 

The model validity provides necessary examination to the fitted model to guarantee 

that it offers a good approximation of the true response surface. The process begins 

with tests to confirm whether the data agree to the assumptions of the model. Then, 

testing for the significance of individual factors to testing the validity of the overall 

fitted response. The requisite test statistics and probability values (p-values) were 

generated from the SAS (version 8) software.  

3.4.1.1 Testing for Model Assumptions 

Data that are fitted the Kronecker model need to be independent with a constant 

variance. The error terms are independent and normally distributed. Scatter plot would 

show if the data are distributed with a constant variance. A normal probability plot for 

the residuals shows whether the errors are normally distributed or not.  

3.4.1.2 Testing for the Overall Model Fit 

Analysis of variance (ANOVA) and Coefficient of variations were used to examine the 

fitted Kronecker model. From the ANOVA table (generated from the SAS software), 

the p-values were compared with the level of significance ( ) to make a decision on 

whether the model fit was adequate of not.  

3.4.1.3 Testing for the Adequacy of Parameters 

To test the adequacy of each parameter (the significance of a factor or interaction) in 

the model, we employed student t-test based on the p-values from the analysis output 

from the SAS software. The parameter with the smallest standard error was considered 

better than the others.  
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

4.0 Introduction  

This chapter presents the findings and analysis of the study as set out in the research 

methodology. The requisite equivalence relation is presented as well as derivations of 

optimal slope weighted designs for particular criteria. 

4.1 Equivalence Theorem  

The theorem provides the necessary conditions for the existence of p   optimal slope 

mixture designs. This theorem provides a necessary and sufficient condition applicable 

to the specific problem of this study. The object here is to solve the design problem; 

       Maximize p (Ck(M(τ))) with τТ 

           Subject to Ck(M(τ)) PD(m) …..………………………………………….. (4.0) 

Suppose )( satisfies the side condition Ck(M(τ)) PD(m) and write Cj=Ck(M( j ) ) 

for j=(1, 2, …, m). 

Theorem 

Let mT  be the weight vector of a weighted centroid design )(  which is feasible 

for 'K  and let  )0:,,2,1()(  jmj   , be a set of active indices. Furthermore, 

let )))((( MCC k  and ]1,(p . Then )(  is optimalslopep   for K  in T 

if and only if; 
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where, 0H DK  
 
is an adjusted slope matrix with for a slope matrix defined as 
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 for a regression  vector, tttf )( . 

Proof 

We begin by adopting the following theorems (3.1) and (3,2), that provides a sufficient 

condition for existence of optimalp   designs for  K  and their uniqueness. 

The two major arguments of the proof are the linearity of the information matrix 

mapping as depicted by equation (3.10) and the fact that )( mT  is the convex hull of 

the elementary centroid designs m ,,, 21  .  

From the equivalence theorem 7.19 in Pukelsheim (1993), that )( is optimalp   

for K  in T if and only if there exists a generalized inverse G of ))(( MM   

satisfying 

        
pp traceCGKGKCtraceM 1))((   for all mT ……………………(4.1.1) 

with 

11 )()(   KKMKKKKC , MKKKKM  1)(  and KMKCM k
 )))((())((  , 

 To incorporate the slope concept, we rewrite (4.1.1) as; 

000

1

0 ))(( HCtraceHHGKGKCMtraceH pp   for all mT ……………….(4.1.2) 

where 0H DK .  

The left-hand side may be written as, 
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0

111

0

1

0 ))()))(((())(())(( HCKKGMKKMCKKGMKKtraceHHGKGKCMtraceH p

k

p   

………………………………………………………………………(4.1.3) 

Due to the feasibility of )( , we have )()( MK  .  

Now the right-hand side of equation (4.1.3) simplifies to 
0

1

0 )))((( HCMCtraceH p

k
  

and the equation turns into 
000

1

0 )))((( HCtraceHHCMCtraceH pp

k
  for all 

mT . 

Since the information matrix is a linear mapping then it can be expressed as 





m

j

jkjk MCMC
)(

)(()))(((


 , with  )0:,,2,1()(  jmj   . We then can 

write the left-hand side as 0

1

1

0 HCCtraceH
m

j

p

jj




 . Giving 

000

1

0 HCtraceHHCCtraceH pp

j

 for all mj 1 . 

Finally, is the assertion that equality must hold for any )(j ▪ 

In addition, the weighted centroid designs with first and second weights being positive 

are unique, Klein (2004). 

4.1.1 A- Optimal Slope Weighted Centroid Design 

This section presents the slope optimal weighted centroid designs for the average 

variance criterion, 1 .  

4.1.1.1 A- Optimal Slope Weighted Centroid Design with Two Ingredients 

The first case is a mixture experiment with two ingredients. According to (3.2), the 

weighted centroid design has three support points (1, 0), (0, 1) and (½, ½). The slope 
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weighted centroid design
2211

2

1

)(  
j

jj
 with 221 )0,0,,( T   

and 121  , encompassing (from (3.3)) two elementary centroid designs; 



























1

0
,

0

1
1  and 











































2

1

2

1

2 . 

The Kronecker model (as defined in 3.5) has four parameters which are not all 

estimable. We chose the maximal parameter subsystem by using the coefficient (K) 

matrix for the design. Using the unit vectors 









0

1
1e , 










1

0
2e   and  112 E , we have 

for m=2 in (3.7) and (3.8); 

   























10

00

00

01

'' 2221111 eeeeK

 

and  

    



























0

2

1

2

1

0

2K

 

which when substituted into (3.6), gave the coefficient matrix, 
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























010
2

1
00

2

1
00

001

K

…………………………………………......................... (4.2) 

The moment matrix for the weighted centroid design with two ingredients from (3.10) 

is         

              





















4313122

31222231

31222231

2231314

))((









M . 

Using the definition of the fourth order moments (3.11), for m=2 these moment 

matrices for two centroids 1  and  are respectively; 

  

























2

1
000

0000

0000

000
2

1

)( 1M ………………………………………………….(4.3) 

 and 

   





























16

1

16

1

16

1

16

1
16

1

16

1

16

1

16

1
16

1

16

1

16

1

16

1
16

1

16

1

16

1

16

1

)( 2M ……………………………………(4.4) 

  

2
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We obtained the left inverse of the coefficient matrix (4.2) using (3.15) as; 

                     



















0

1

0

1

0

0

1

0

0

0

0

1

L

 ………………..………………………………..(4.5)

 

Then, for the design 1 , the information matrix using (4.5) and (4.3) in (3.18) is; 

                     


















000

02/10

002/1

1C ……………………...…................................... (4.6) 

For the design 2 , the information matrix was obtained using (4.5) and (4.4) in (3.18) 

as 

              


















16/416/216/2

16/216/116/1

16/216/116/1

2C …………………………….……………….. (4.7) 

From equations (4.6) and (4.7) we got the information matrix for the design )(  using 

the  linear function (3.17) that was to be adjusted for slope as; 

                      





























488

816

8

16

81616

8

222

2212

2221

0







C . ………………………….………(4.8) 

To get the A- optimal slope design we proceeded as follows. First by condition (3.21), 

putting p=-1, we have that )(  is optimalslope1  for K  in T if and only if 

         0

1

000

2

00 HCtraceHHCCtraceH j



 for all }2,1{j ……………………….. (4.9) 
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The inverse of the information matrix (4.8) is; 

                  































 

21

21

11

11

11

11

0

411

12
0

1
0

2

)))]((([











MCC

…………………….(4.10) 

which on squaring yields, 

              


































2

2

2

1

2

221

2

1

2

2

1

21

2

2

1

21

2

2

1

21

2

1

2

1

2

2

1

21

2

1

2

1

2

0

3816)34()34(

)34(51

)34(15

























C

………(4.11) 

The slope matrix for the design with two ingredients using equation (3.12) is  

                              









211

221

20

02

ttt

ttt
D  ……………………………………...(4.12) 

This using equation (3.13) gave an adjusted slope matrix  

                                 









12

21

0
20

02

tt

tt
DKH

 ………………………………..(4.13)

 

For j=1 in equation (4.9),  

       0

1

000

2

010 HCtraceHHCCtraceH 


. ……………………………………….. (4.14) 

We have from equations (4,6), (4.11) and (4.13); 
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
































21

2

212

2

2

2

2

21
21

2

1

2

21
2121

2

212

1

2

1

0

2

010 )34(2
20

)34(2
4

)34(2
4

)34(2
20

2

1

tttttt

tttttt

HCCH
















  ……...(4.15a) 

The trace of (4.15a) is; 

2

2

1

12
21

2

212

2

2

12

1

0

2

010
2

447)34(4
)(20

2

1




















 



ttttHCCtraceH ………(4.15b) 

after substituting for 2,1,
4

52  iti  and 4

1
21 tt . 

Also, from equations (4.10) and (4.13);  






















2

121

2

221

2

1

21

2

2

2

221

2

1

1

0

1

00
48)2(2

)2(2481

bttttttbt

ttbtbtttt
HCH


…………………………..(4.16a) 

where  

 
2

214



 
b , 2,1,

4

52  iti and 4

1
21 tt  .  

The trace of (4.16a) is; 

 
21

122

2

2

121

2

2

2

1

1

0

1

00
2

2041
)(8)(8

1











ttbttttHCtraceH ……………….(4.16b) 

Using equations (4.15b) and (4.16b) in condition (4.14) gives; 

    
21

12

2

2

1

12

2

2041

2

447







 



  

This after employing the strict relation 12 1   , yielded the equation, 

 0479221 1

2

1     
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with solutions; 3.790504535 and 0.590447846. Therefore, 590447846.01   since 

)1,0(1 . 

Similarly, for j=2, in condition (4.9) we obtained the necessary condition as,   

0

1

000

2

020 HCtraceHHCCtraceH 


. …………………………… (4.17) 

The left hand side of this condition was gotten by evaluating the product of (4.7), (4.11) 

and (4.13); 

 




















2

121

2

2

2

221

2

1

2

121

2

2

2

221

2

1

21

0

2

020
2)24(42)24(4

2)24(42)24(4

2

1

atttatatttat

atttatatttat
HCCH


…..(4.18a) 

where  

  
2

214



 
a , 2,1,

4

52  iti and 4

1
21 tt .  

The trace of (4.18a) is;  

2

21

21
0

2

20

312



 



HCCtraceH k  …………………………………………..….(4.18b) 

Using equations (4.16b) and (4.18b) in condition (4.17) led to the equation; 

  
21

12

2

21

21

2

2041312







 



.  

From this equation together with the relation 21 1    resulted in the quadratic 

equation 

     0245021 2

2

2   , 

 with solutions -2.790504535 and 0.409552154. Hence, 409552154.02   since 

)1,0(2   
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Thus for m=2 ingredients, we have the A- optimal slope weight vector; 

     590447846.01   and 409552154.02  ……………(4.19) 

Therefore, in the second-degree Kronecker model for mixture experiments with two 

ingredients, the unique A- optimal slope design for K  is 

212211 409552154.0590447846.0)(  A
  

From equation (3.22), the average-variance criterion, for a nonnegative definite matrix 

C of order s is given by;  

         

1

1

1

1
)(





 







 traceC

s
v   ……………………………………………..…... (4.20) 

At present the average-variance criterion, is obtained for the information matrices of 

order m=2 from the relation; 

                  

1

0

1

001
2

1
)(





 







 HCtraceHv 

………………………………………(4.20)
 

Now, from (4.10), (4.13) and (4.19) we obtained; 






























56816162.29215790169.2

215790169.256816162.29

4120114

1144120

4

1

2121

2121

21

0

1

00





HCH ….(4.21) 

Hence using (4.20) and (4.21), we got; 

 033820161.0)56816162.29()( 1

1  

v ▪…………………………………….   (4.22) 

4.1.1.2 A- Optimal Slope Weighted Centroid Design with Three Ingredients 

The second case is a mixture experiment with three ingredients.  From (3.2) this 

weighted centroid design has seven support points are as shown in table 1. 
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Table 1: Support points for the three ingredients centroid design 

Design  

point 

Ingredients 

t1 t2 t3 

1 1 0 0 

2 0 1 0 

3 0 0 1 

4 ½ ½ 0 

5 ½ 0 ½ 

6 0 ½ ½ 

7 ⅓ ⅓ ⅓ 

 

The optimal slope weighted centroid design is  2211

3

1

)(  
j

jj  with 

321 )0,0,,( T   and 121  . According to (3.3), the design with m=3 

ingredients has three centroids. These are:  



































































1

0

0

,

0

1

0

,

0

0

1

1  ,


































































2/1

2/1

0

,

2/1

0

2/1

,

0

2/1

2/1

2  and 


































3/1

3/1

3/1

3 . 

The Kronecker model as defined in (3.5) has nine parameters all of which are not all 

estimable simultaneously. We chose the maximal parameter subsystem (consisting of 

six parameters) by using the coefficient (K) matrix. This matrix was arrived at using 

by using the unit vectors  

  0011e ,   0102e ,  1003 e ,   00112E ,   01013E  

and      10023E .  
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With these vectors for m=3 in (3.7) and (3.8), we got the submatrices for the coefficient 

matrix as; 





































1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

1

'' '

3332221111 eeeeeeK

 

and  

 







































0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

)()()(

3
1

3
1

3
1

3
1

3
1

3
1

2332231331131221122 EeeEeeEeeK

 

The two matrices were then substituted into (3.6), to give the coefficient matrix, 
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













































000100
3

1
00000

0
3

1
0000

3

1
00000

000010

00
3

1
000

0
3

1
0000

00
3

1
000

000001

K

……………………………………….(4.23)

 

The moment matrix the weighted centroid design which has all moments being of order 

four is from (3.10); 





































4313131222113121122

31222112231211211211211

31211222112112112221131

31222112231211211211211

2231211314312113122

21121121121131222112231

31211222112112112221131

21121121121131222112231

2221131211223131314

)((



















M  

Using the definition of the fourth order moments (3.11), for m=3 ingredients the 

moment matrices for two centroids 1  and  are respectively; 2
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



































3/100000000

000000000

000000000

000000000

00003/10000

000000000

000000000

000000000

000000003/1

)( 1M ……………(4.24) 

and 





































24/148/148/148/148/1048/1048/1

48/148/1048/148/10000

48/1048/100048/1048/1

48/148/1048/148/10000

48/148/1048/124/148/1048/148/1

000048/148/1048/148/1

48/1048/100048/1048/1

000048/148/1048/148/1

48/1048/1048/148/148/148/124/1

)( 2M …..(4.25) 

The left inverse of the coefficient matrix using the coefficient matrix (4.23) is; 



























 

02/302/300000

002/30002/300

000002/302/30

100000000

000010000

000000001

)( 1 KKKL ………(4.26) 

Then, we obtained for the design 1 , the information matrix using (4.24) and (4.26) in 

(3.18) as; 
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



























000000

000000

000000

0003/100

00003/10

000003/1

1C

……………. ………………………….(4.27) 

For the design 2 , the information matrix was obtained using (4.25) and (4.26) in (3.18) 

as 





























16/30016/116/10

016/3016/1016/1

0016/3016/116/1

16/116/1024/148/148/1

16/1016/148/124/148/1

016/116/148/148/124/1

2C

………………………………. (4.28) 

From equations (4.27) and (4.28) we got the information matrix for the design )(  

using the  linear function (3.17) that was later adjusted for slope as; 













































16

3
00

1616
0

0
16

3
0

16
0

16

00
16

3
0

1616

1616
0

24

8

4848

16
0

164824

8

48

0
1616484824

8

)))(((

222

222

222

222122

222212

222221

0













MCC k

. …(4.29)

 

 

To get the A- optimal slope design with three ingredients we proceeded as follows. 

First by condition (3.21), putting p=-1, we have that )(  is optimalslope1  for

K  in T if and only if 
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0

1

00

2

0 HCtraceHHCCtraceH kkj



 for all }2,1{j ………………………….. (4.30) 

The inverse of the information matrix (4.29) for the design with three ingredients is; 
























































21

21

1111

121

21

111

1121

21

11

111

111

111

1

0

3

)8(2

3

1

3

111
0

3

1

3

)8(2

3

11
0

1

3

1

3

1

3

)8(2
0

11

11
0

3
00

1
0

1
0

3
0

0
11

00
3

























C

…………...(4.31) 

which on squaring yielded the matrix; 

      




























effccd

fefcdc

ffedcc

ccdabb

cdcbab

dccbba

C 2)]([ 

 ……………………………………….(4.32) 

where:  

2

1

11


a , 

2

1

1


b , 

2

2

1

21

3

)34(4



 
c , 

2

13

2




d , 

2

2

2

1

1

2

1

9

)3227(8



 
e  and   

            
2

2

1

21

9

)716(2



 
f  
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The slope matrix for the design with three (m=3) ingredients using equation (3.12) is 

 



















32121

33211

32321

20000

00200

00002

ttttt

ttttt

ttttt

D ,………………………………… (4.33)    

We then got the adjusted slope matrix using (3.13) as;  



















23
2

13
2

3

33
2

13
2

2

33
2

23
2

1

0

0200

0020

0002

ttt

ttt

ttt

H

………………………………………….(4.34)

 

when j=1 in (4.30), the necessary condition is;  

0

1

00

2

10 HCtraceHHCCtraceH kk



. …………………………………… (4.35) 

We used (4.27), (4.32) and (4.34) to obtain; 


























)(44)(4)(4

)(4)(44)(4

)(4)(4)(44

3

1

32313
42

321

2

23
4

3221

2

13
4

31

31

2

33
4

3132213
42

231

2

13
4

21

32

2

33
4

3132

2

23
4

2131213
42

1

2

1

0

2

010

ttttcttdtcttttdtcttt

tdtctttttttcttdtcttt

tdtcttttdtctttttttct

HCCH


 ...(4.36a) 

where: 

    
2

21

3

)34(4



 
c , 3

2
d  3,2,1,

18

292  iti  and 3,2,1,
36

13
 jitt ji

. 

The trace of (4.36a) is; 

2

2

1

12
0

2

010
81

4165430



 



HCCtraceH

……………………………………..……(4.36b)
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Also, from (4.31) and (4.34) we got; 


























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



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2

2

19
4

32313
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3

3221319
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19
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2

23
4

3231219
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42

3

2

13
4

3231219
42

19
42

3

2

23
4

2132319
42

29
42

3

2

13
4

319

82

3

2

19
4

32213

82

23132219
42

29
42

2

2

13
4

3231219
42

39
42

2

2

13
4

329

82

3

2

29
4

31213

82

1

1

0

1

00

)()(12

)()(

)()(

)()()()(

)()(12)()(

)()()()(12
1

tbtttattttt

tattbttbtbttt

tbttattbtbttt

tattbttbtbttttbttbttatbttt

tbtttattttttbttbttatbttt

tbttbttatbttttbtttattttt

HCH


….(4.37a)
 

where:  

2

21

3

)8(2



 
a

, 3

1
b , 3,2,1,

18

292  iti  and 3,2,1,
36

13
 jitt ji

. 

Trace of (4.37a) is; 

 
21

21
3231219

8
3

162

3

2

2

2

19
8

1

1

00
81

44881856
))(())(12(

1














ttttttbtttaHCtraceH .(4.37b) 

Using (4.36b) and (4.37b) in condition (4.35) gave the equality relation; 

       
21

21

2

2

1

12

81

44881856

81

4165430







 



 . 

This after using the equality, 12 1   , yielded the quadratic equation,  

        05430103342632 1

2

1   ,  

with solutions 0.6249112749 and 3.301380518. But since )1,0(1 the definite 

choice is 6249112749.01  . 

Similarly, when j=2 in condition (4.30), we got the relation,  

           0

1

00

2

20 HCtraceHHCCtraceH kk



. ………………………................... (4.38) 
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We first worked out the product on the left hand side of condition (4.38) using equations 

(4.28), (4.31) and (4.34). That is 












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
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3
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42

3
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8
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16

329
42
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82
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42

2219
8

329
16

319
42

29
82
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42

1

329
16

32213
42

3

2

19
42

2319
8

329
16

219
42

39
82

23
42

1

329
8

319
16

219
42

39
82

13
42

2329
16

31213
42

3

2

29
42

1

21

0

1

020

))(4()(8

)4(4

)4(4

)4(4)4(4

))(4()(8)4(4

)4(4))(4()(8

3

1

ttttttcttdt

ttttttdtctt

ttttttdtctt

ttttttdtcttttttttdtctt

ttttttcttdtttttttdtctt

ttttttdtcttttttttcttdt

HCCH



…(4.39a)
 

where:  

2

1

3

)133(




c ,

2

1)142(




d , 3,2,1,

18

292  iti  and 3,2,1,
36

13
 jitt ji .  

The trace of this matrix (4.39a) being, 

 

2

21

21

3231219
16

3
82

3

2

2

2

19
8

21

1

020

81

12261962310

))(8())(8(
3

1
















ttttttctttdHCCtraceH

… (4.39b) 

Using (4.37b) and (4.39b) in condition (4.38) gave the conditional equation, 

21

21

2

21

21

81

44881856

81

12261962310







 



 . 

From which after using the relation, 21 1   narrowed to the quadratic equation; 

0227250442632 2

2

2     

with solutions 0.3764775227 and -2.292890897. Therefore, 3764775227.02   

since )1,0(2  . 

Thus for m=3 ingredients, we have the A- optimal slope weight vector; 
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      6249112749.01   and 3764775227.02  …………………………….(4.40) 

Therefore, in the second-degree Kronecker model for mixture experiments with three 

ingredients, the unique A- optimal slope design for K  is  

212211 3750887251.06249112749.0)(  A
. 

From equation (3.22), the average-variance criterion, for a nonnegative definite matrix 

C of order s is given by;  

         

1

1

1

1
)(





 







 traceC

s
v   ……………………………………………..…... (4.41) 

Presently the average-variance criterion, is obtained for the information matrix of order 

m=3 from the relation; 

                  

1

0

1

001
3

1
)(





 







 HCtraceHv 

………………………………..…….…(4.42)
 

Now, from (4.31), (4.34) and (4.40) we obtained; 






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
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
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HCH  










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












9176.498686.38686.3

8686.39176.498686.3

8686.38686.39176.49

0

1

00 HCH

………….………………(4.43) 

The average variance criterion for the design with m=3 ingredients using (4.42) and 

(4.43) is given by;  

                                     020033014.0)9176.49()( 1

1  

v ▪ 
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4.1.1.3 A- Optimal Slope Weighted Centroid Design with Four Ingredients 

For a mixture experiment with four ingredients, we consider the weighted centroid 

design with the following fifteen points of support (in table 2) arrived at using the 

definition of points (3.2). 

Table 2: Support points for the four ingredients centroid design 

Design 

points 

Ingredients 

t1 t2 t3 t4 

1 1 0 0 0 

2 0 1 0 0 

3 0 0 1 0 

4 0 0 0 1 

5 ½ ½ 0 0 

6 ½ 0 ½ 0 

7 ½ 0 0 ½ 

8 0 ½ ½ 0 

9 0 ½ 0 ½ 

10 0 0 ½ ½ 

11 ⅓ ⅓ ⅓ 0 

12 ⅓ ⅓ 0 ⅓ 

13 ⅓ 0 ⅓ ⅓ 

14 0 ⅓ ⅓ ⅓ 

15 ¼ ¼ ¼ ¼ 

 

 The optimal slope weighted centroid design is 

44332211

4

1

)(  
j

jj  with 221 )0,0,,( T   and 

121  . There are four-elementary centroid designs as directed from (3.3) are; 
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The Kronecker model using m=4 ingredients (according to (3.3)) has sixteen 

parameters which are not all estimable. We chose the maximal parameter subsystem 

(consisting of ten parameters) by using the coefficient (K) matrix for the design. To 

construct this matrix, we relied on the unit vectors:  

  00011e ,   00102e ,   01003e ,   10004e ,  

  00000112E ,   00001013E ,   00010014E ,

  00100023E ,       01000024E  and   

  10000034E  

 we have for m=4 in (3.7) and (3.8);  
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which when substituted into (3.6), gave the coefficient matrix, 
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The moment matrix for the weighted centroid design )(  with four ingredients from 

(3.10) is given by;  
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Using the definition of the fourth order moments (3.11), for m=4 these moment 

matrices for two centroids 1  and  are respectively; 
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and 

2
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Then, we obtained the left inverse of the coefficient matrix using (4.45) as; 
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The design 1 , has the information matrix obtained using (4.46) and (4.48) in (3.18) 

as; 
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Then for the design 2 , the information matrix was obtained using (4.47) and (4.48) in 

(3.18) as; 
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From equations (4.49) and (4.50) we got the information matrix for the design )(  

using the  linear function (3.17) that was to be adjusted for slope as; 
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From condition (3.21), putting p=-1, we have that )(  is optimalslope1  for K  

in T if and only if, 
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The inverse of the information matrix (4.51) is; 
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which on squaring yields, 
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The slope matrix for the design with four ingredients using equation (3.12) is 
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This making us of equation (3.13) led to an adjusted slope matrix;  
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when j=1 in (4.52) results in the relation,  
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We have from equations (4.49), (4.54) and (4.56);
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The trace of (4.58a) is; 
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Also, from equations (4.53) and (4.56); 

 


























































)()(2)(16

)(

)(

)(

)(

)()(2)(16

)(

)(

)(

)(

)()(2)(16

)(

)(

)(

)(

)()(2)(16

1

3231218

1
434241

2

3

2

2

2

14

2

4

43442324131

2

2

2

116

12

4

2

3

42443324121

2

3

2

116

12

4

2

2

41443423121

2

3

2

216

12

4

2

1

43442324131

2

2

2

116

12

3

2

4

4241218

1
433231

2

4

2

2

2

14

2

3

32443423121

2

4

2

116

12

3

2

2

31443324121

2

4

2

216

12

3

2

1

42443324121

2

3

2

116

12

2

2

4

32443423121

2

4

2

116

12

2

2

3

4341318

1
423221

2

4

2

3

2

14

2

2

21442324131

2

4

2

316

12

2

2

1

41443423121

2

3

2

216

12

1

2

4

31443324121

2

4

2

216

12

1

2

3

21443324131

2

4

2

316

12

1

2

2

4342328

1
413121

2

4

2

3

2

24

2

1

1

0

1

00

tttttttttttttttt

tttttttttttttt

tttttttttttttt

tttttttttttttt

tttttttttttttt

tttttttttttttttt

tttttttttttttt

tttttttttttttt

tttttttttttttt

tttttttttttttt

tttttttttttttttt

tttttttttttttt

tttttttttttttt

tttttttttttttt

tttttttttttttt

tttttttttttttttt

HCH

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a



…...(4.59a)
 

where:  
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Trace of (4.59a) is;  
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Using (4.58b) and (4.59b) in (4.47) gave the equality relation 
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that after substituting for 12 1    led to the quadratic equation, 
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with solutions 0.66403958 and 2.597605842. But since )1,0(1 , the right choice is 

664039581.01  . 

When j=2 in (4.52), we obtained the relation,  
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To work out the trace on the left hand side of this condition, we first multiplied 

(4.50), (4.53) and (4.56), to get;  
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The trace of matrix (4.61a) being, 
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Using (4.51b) and (4.61b) in (4.60) gave, 
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That after substituting for 21 1    led to the quadratic equation; 
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with solutions 0.335960419 and -1.597605842. But since )1,0(2  the only 

acceptable choice is 335960419.02  . 

Thus for m=4 ingredients, we have the A- optimal slope weight vector; 

    664039581.01   and 335960419.02  …………..…(4.62) 

Therefore, in the second-degree Kronecker model for mixture experiments with four 

ingredients, the unique A-optimal slope design for K is 

212211 335960419.0664039581.0)(  A
. 

From equation (3.22), the average-variance criterion, for a nonnegative definite matrix 

C of order s is given by;  
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At present the average-variance criterion, is obtained for the information matrices of 

order m=4 ingredients from the relation; 
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Now, the product of (4.53) and (4.56) together with the use of the weight vector (4.62) 

gave; 
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The average variance criterion for the design with m=4 ingredients from (4.65) and 

(4.64) is given by 

012965426.0)1282.77()( 1

1  

v ▪ 

4.1.1.4 A- Optimal Slope Weighted Centroid Design with m Ingredients 

Now, following are relations that can be used to get the A- optimal slope weight vector 

and the optimal value for a design with 2m ingredients for the A-criterion. This 

development was motivated by the realization that there is a trend in the numerical 

values for the weight vector and the A-slope optimality values linking the values to the 

number of ingredients.  

The information matrices for weighted centroid designs are contained in the quadratic 

subspace,  HssymC ,  and by (3.25) can be uniquely represented in the form 
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with coefficients ga ,, , Klein (2004). The terms containing V2, W2 and W3 only 

occur for 3m  and 4m  respectively.  

The matrix (4.66) according to (3.25a) can be partitioned according to the block 

structure,  

            






 
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2221

2111

CC

CC
C ……………………………………………….…. …… (4.67) 

with )(11 msymC  ,
m

m

C


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

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2
22

m
symC .  

For j=1,2, …, m, from (3.25c) we obtain 

              

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,21,11
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with blocks obtained using (3.25d) as follows: 

i)  for j=1; 

                       mI
m

C
1

1,11  , C21,1=0 and C22,1=0 . 

ii) for j=2; 

          22,11
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1
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Thus we have 
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73 

 

 

 

 

and  
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From (4.69) and (4.70) in equation (3.17) which we obtained the information matrix to 

be adjusted for slope as, 
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 ………………….………… (4.71) 

An inverse of a matrix in ),( Hssym  can be computed by solving a system of linear 

equations. By the same approach we obtained the blocks of the inverse matrix 

partitioned as, 






































2

1221

21
1

1

1

111

0 1])1(4[21

1

W
m

I
m

m
V

VI
m

C

m

m








…………………………… (4.72) 

The square of this inverse matrix was algebraically obtained as; 
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From the Kronecker second order regression function we got the slope matrix D using 

(3.12) as 
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This slope matrix was then adjusted using (3.13) to get the adjusted slope matrix 

                                       




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
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2
2 Vt

m
ItDKH jmi …………… ………… (4.75) 

This is an 
1

2

m
m

 
 
 

 matrix with K being the coefficient matrix as defined in (3.6) 

Now a design that is A-slope optimal if and only if it satisfies condition (3.21). That 

is, a design is A-slope optimal if, 

)(0

1

000
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00  
jallforHCtraceHHCCtraceH j   …………………………(4.76) 

For j=1; 

we employed the matrices (4.69), (4.73) and (4.75) to get the product: 
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The trace of (4.77a) is; 
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From the matrices (4.72) and (4.75) we got the product; 
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The trace of (4.78a) is; 
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after employing the ordinates of the support points in the m-ingredient mixture design.  

Using (4.77b) and (4.78b) in condition (4.76) we obtained the relation, 
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That after substituting for 12 1    led to the quadratic equation; 
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where:  

  31929232344 23458  mmmmmmg ,  

  )15181188( 2342  mmmmmh   

  )313637503310(2 23456  mmmmmmmq . 

Similarly, for j=2, we worked out the product of the matrices (4.70), (4.73) and (4.75) 

to get; 
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where; 
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The trace of (4.79a) is; 
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Using (4.78b) and (4.79b) in condition (4.76) we obtained the equivalence relation; 
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This alongside the conditional relation 21 1   gave the equation; 
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with a feasible solution;  
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Thus for a design with m≥2 ingredients, we have the A- optimal slope weight vector; 
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Therefore, in the second-degree Kronecker model for mixture experiments with 2m  

ingredients, the unique A- optimal slope design for K  is 2211

)( )(  A
, with 

the weight vector as provided for in (4.80). 

From equation (3.22), the average-variance criterion, for a nonnegative definite matrix 

C of order s is given by;  
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At present the average-variance criterion, is obtained for the information matrices of 

order s=m from the relation; 
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001

1
)(





 







 HCtraceH

m
v 

………………………………………(4.82)
 

 

Using the trace value from (4.78) we got; 

BmmAmmmm

m
v

2

2

2

3

1

2

21

3

1
)1(8])1()1(8[4

)(






 ▪…………………(4.80a) 

 

4.1.2 D- Optimal Slope Weighted Centroid Design 

We then derived optimal slope weighted centroid designs for the determinant criterion, 

0 . We started this section by adapting equation (3.21). This equation provides 

necessary and sufficient condition for the derivation of the D- optimal slope designs for 

a specific number of ingredients.  We got the obligatory relation by putting p=0 in 

equation (3.21), to get the condition that a design is D-slope optimal for K  if and 

only if;  
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










otherwiseHtraceH

jallforHtraceH
HCCtraceH j

00

00

0

1

00

)(
  ………………….………. (4.83) 

where, 0H is an adjusted slope matrix according to (3.13).  

We then proceeded to demonstrating the D- optimal slope designs for specific number 

of ingredients.  

4.1.2.1 D- Optimal Slope Weighted Centroid Design with Two Ingredients 

To obtain the D- optimal slope weighted centroid design with two ingredients, we 

proceeded by first assembling the necessary matrices as follows: 

The information matrix to be adjusted for slope and optimized for the D-criterion 

from (4.11) is; 

 





























488

816

8

16

81616

8

222

2212

2221

0







C ……………………………………………….(4.84) 

The information matrices employed for the two centroids  1  and 2 are provided in 

(4.6) and (4.7). These are respectively;  



















000

02/10

002/1

1C

 ……………………………………………………………..(4.85) 

and  



















16/416/216/2

16/216/116/1

16/216/116/1

2C

………………………………………………..……..(4.86)
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The inverse of the information matrix for the design with two ingredients is provided 

in (4.7) as,  

































21

21

11

11

11

1

0

411

12
0

1
0

2











C ..…………………..………………….…………… (4.87) 

We also needed to use the adjusted slope matrix as is from (4.13). That is; 











12

21

0
20

02

tt

tt
DKH ……………………………………………………... (4.88) 

From condition (3.21), we have that a weighted centroid design )(  is 

optimalslope0  for K  in T if and only if  

         )(000

1

00 


jallforHtraceHHCCtraceH j ………………………… (4.89) 

For }2,1{j we begin with the case j=1. Using the information matrices (4.85), (4.87) 

and (4.88), We calculated the following products: 

i) 

































195

519

4

1

282

228

2

1

121

2

2

2

2

2

121

2

1

1

0

1

010
 tttt

tttt
HCCH

 ……………(4.90a) 

where;  

4

52 it

 and   
4

1
21 tt

 

The trace of (4.90a) is, 
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          1

0

1

10
2

19


 HCCtraceH

………………….. …………………………… (4.90b) 

ii) 



























251

125

4

1

4

4
2

1

2

221

21

2

2

2

1

00
tttt

tttt
HH .  

The trace of (4.91a) is;     

2

25
00 HtraceH    ………………………………………… ………………… (4.91b) 

Using (4.90b) and (4.91b) in the relation (4.89) we got,  

   
25

19
1   . 

Similarly, when j=2, first a product of the matrices (4.86), (4.87) and (4.88) is; 

          





























33

33

2

11

221

2

121

2

2

21

2

121

2

2

2

0

1

020
 tttttt

tttttt
HCCH ……………………(4.92a)  

The trace of (4.92a) is; 

         
2

0

1

020

3





HCCtraceH  ………………………………………………….(4.92b) 

Second, using (4.91b) and (4.92b) in (4.89) we got, 

      
25

6
2  .  

Hence, the D- optimal slope weight vector is; 

    
25

19
1   and 

25

6
2   …………………………………………………(4.93) 
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Therefore in the second-degree Kronecker model for mixture experiments with two 

ingredients, the unique D- optimal slope design for K  is 

212211

)(

25

6

25

19
)(  D . 

To obtain the optimal value )( 0v , first we adjusted the information matrix (4.84) for 

slope by pre- and post-multiplying by the adjusted slope matrix (4.88). This led to the 

matrix; 











































20818

18208

100

1

3103

3310

4

1

2)(8)2(

)2(2)(8

4

1

212

221

2

12212

2

221

2

221

2

12

2

221

2

12

2

22212

2

121

000









tttttttt

tttttttt
HCH

…….…(4.94)

 

after employing the ordinates of the support points where 
4

52 it and 
4

1
21 tt and the 

values for 1 and 2  from (4.93).  

From equation (3.22), the determinant criterion, for a nonnegative definite matrix C of 

order s is given by;  

          straceCv
1

1)(   ……………………………………………..…... (4.95) 

At present the determinant criterion, is obtained for the information matrix of order 

m=2 from the relation; 

                  
 2

1

0

1

000)( HCtraceHv 



……………………………………………(4.96)

 

The optimum slope value for the determinant criterion was then obtained using (4.94) 

and (4.96) as 

      072196902.2
10000

42940
)(

2
1

0 







v . 
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4.1.2.2 D- Optimal Slope Weighted Centroid Design with Three Ingredients 

To derive the D- optimal slope design with three ingredients, we begun be assembling 

the necessary matrices. These are as outlined: 

The information matrix to be adjusted for slope and optimized for the D-criterion is 

from (4.13); 

 













































16

3
00

1616
0

0
16

3
0

16
0

16

00
16

3
0

1616

1616
0

24

8

4848

16
0

164824

8

48

0
1616484824

8

222

222

222

222122

222212

222221

0













C

……………..……..(4.97)

 

The information matrices employed for the two centroids  1  and 2 are available 

from (4.27) and (4.28) respectively as: 





























000000

000000

000000

0003/100

00003/10

000003/1

1C …………………………………….(4.98)

 

                   and  
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



























16/30016/116/10

016/3016/1016/1

0016/3016/116/1

16/116/1024/148/148/1

16/1016/148/124/148/1

016/116/148/148/124/1

2C

……………………………….(4.99)

 

The inverse of the information matrix for the design with three ingredients is from 

(4.31),  
























































21

21

1111

121

21

111

1121

21

11

111

111

111

1

0

3

)8(2

3

1

3

111
0

3

1

3

)8(2

3

11
0

1

3

1

3

1

3

)8(2
0

11

11
0

3
00

1
0

1
0

3
0

0
11

00
3

























C ………..…..(4.100)  

We also needed the adjusted slope matrix for the Kronecker model with three 

ingredients as is from (4.34). That is; 



















23
2

13
2

3

33
2

13
2

2

33
2

23
2

1

0

0200

0020

0002

ttt

ttt

ttt

H

………………………………………….(4.101)

 

From condition (3.21), we have that a weighted centroid design )(  is 

optimalslope0  for K  in T if and only if  

   )(000

1

00 


jallforHtraceHHCCtraceH j …………………………… (4.102) 

For j=1, the products of the matrices (4.98), (4.100) and (4.101): 
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























)(436

)(436

)(436

9

1

3231

2

3

2

3

2

3

2

23221

2

2

2

2

2

1

2

13121

2

1

1

0

1

10

ttttttt

ttttttt

ttttttt

HCCH


…(4.103a)  

where; 

     3,2,1,
18

292  iti and 3,2,1,
36

13
 jitt ji  

 The trace of (4.103a) is; 

 
1

323121

2

3

2

2

2

1

1

0

1

10
27

496
)(8)(36

9

1


 tttttttttHCCtraceH ….……… (4.103b) 

 and from (4.101) we got the product, 

























)(43644

4)(4364

44)(436

9

1

2

2

2

1

2

33231

32

2

3

2

1

2

221

3121

2

3

2

2

2

1

00

ttttttt

ttttttt

ttttttt

HH …..……….(4.104a) 

where;  

        3,2,1,
18

292  iti and 3,2,1,
36

13
 jitt ji  

the trace of (4.104a) is; 

27

638
)(

9

44 2

3

2

2

2

100  tttHtraceH    ………………………………...……… (4.104b) 

Using the (4.103b) and (4.104b) in the condition (4.102) we have 
319

248
1   . 

Similarly, when j=2 and using (4.99), (4.100) and (4.101) we got a matrix product, 
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
























3231

2

2

2

132

2

331

2

3

32

2

23221

2

3

2

121

2

2

31

2

121

2

13121

2

3

2

2

2

0

1

020
9

4

tttttttttttt

tttttttttttt

tttttttttttt

HCCH


…(4.105a)  

where; 

   3,2,1,
18

292  iti and 3,2,1,
36

13
 jitt ji  

The trace of the matrix product (4.105a) was elementary obtained as;  

                           
2

323121

2

3

2

2

2

1

2

0

1

20
27

142

9

8


 tttttttttHCCtraceH  ….(4.105b) 

Using the (4.104b) and (4.105b) in the condition (4.102) we have 
319

71
2  .  

Hence, the D-optimal slope weight vector for the weighted centroid design with three 

ingredients is; 

    
319

248
1   and 

319

71
2   ………………………………………………(4.106) 

Therefore, in the second-degree Kronecker model for mixture experiments with three 

ingredients, the unique D- optimal slope design for K  is 

                212211

)(

319

71

319

248
)(  D . 

To obtain the optimal value )( 0v , first we adjusted the information matrix (4.97) for 

slope by pre- and post-multiplying by the adjusted slope matrix (4.101). This led to the 

matrix; 
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
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



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000


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HCH …..(4.107) 

after employing the ordinates of the support points.  

where; 

   3,2,1,
18

292  iti and 3,2,1,
36

13
 jitt ji  

From equation (3.22), the determinant criterion, for a nonnegative definite matrix C of 

order s is given by;  

          straceCv
1

0)(   ……………………………………………..…... (4.108) 

At present the determinant criterion, is obtained for the information matrix of order 

m=3 from the equation; 

                  
 3

1

0

1

000)( HCtraceHv 



……………………………………………(4.109)

 

The optimum slope value for the determinant criterion was then obtained using (4.107) 

and (4.109) while taking note the numerical values for 1 and 2 , (from 4.106). The 

determinant criterion was obtained as; 

    813481018.1964019334.5)( 3

1

0 v ▪ 
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4.1.2.3 D- Optimal Slope Weighted Centroid Design with Four Ingredients 

The task here was to derive the D- optimal slope design for a mixture experiment with 

four ingredients. The information matrix to be adjusted for slope and optimized for the 

D-criterion is from (4.33); 

 



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

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
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
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
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0
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0
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C

…(4.110) 

The information matrices employed for the two centroids  1  and 2 are respectively 

from (4.49) and (4.50);  
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and 
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The inverse of the information matrix (4.110) for the design with four ingredients is, 
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We also utilized the adjusted slope matrix as is from (4.56). That is; 























32
1

22
1

12
1

4

42
1

22
1

12
1

3

42
1

32
1

12
1

2

42
1

32
1

22
1

1

0

0002000

0000200

0000020

0000002

tttt

tttt

tttt

tttt

H , …………………(4.114)  

From condition (3.21), we have that a weighted centroid design )(  is 

optimalslope0  for K  in T if and only if  
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jallforHtraceHHCCtraceH j …………………………… (4.115) 

For the case j=1, we have the following requisite products using (4.111), (4.113) and 

(4.114) 
































)(16

)(16

)(16

)(16

4

1

3214

2

4

2

4

2

4

2

4

2

34213

2

3

2

3

2

3

2

2

2

24312

2

2

2

2

2

1

2

1

2

13321

2

1

1

0

1

010

tttttttt

tttttttt

tttttttt

tttttttt

HCCH


 ..(4.116a) 

  The trace of (4.116a) is;   

 

 

1

434232413121

2

4

2

3

2

2

2

1

1

0

1

010

48

1571

)(2)(16
4

1










ttttttttttttttttHCCtraceH

 .. (4.116b) 

      where; 

   4,3,2,1,
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1032  iti and 4,3,2,1,
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 and  
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  The trace of (4.117a) is;  
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     where; 
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Using the (4.116b) and (4.117b) in the relation (4.115) we have, 
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1   . 

Similarly, when j=2 and using (4.112), (4.113) and (4.114), we have, 
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The trace of this matrix product (4.118a) was elementary obtained as; 
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where; 
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1032  iti and 4,3,2,1,
144

77
 jitt ji  

Using the (4.117b) and (4.118b) in the relation (4.115) we got 
1957

386
2  .  
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Hence, the D- optimal slope weight vector is; 
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1   and 

1957
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Therefore, in the second-degree Kronecker model for mixture experiments with four 

ingredients, the unique D-optimal slope design for K  is, 
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To obtain the optimal value )( 0v , first we adjusted the information matrix (4.110) for 

slope by pre- and post-multiplying by the adjusted slope matrix (4.114). This led to the 

matrix; 
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after employing the ordinates of the support points, where; 

   4,3,2,1,
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From equation (3.22), the determinant criterion, for a nonnegative definite matrix C of 

order s is given by;  

          straceCv
1

0)(   ……………………………………………..…... (4.121) 

At present the determinant criterion, is obtained for the information matrix of order 

m=4 from the relation; 

                  
 4

1

0

1

000)( HCtraceHv 



……………………………………………(4.122)

 

The optimum slope value for the determinant criterion was then obtained using (4.120) 

, (4.122) and  the numerical values for 1  and 2  (from  (4.119)). The slope optimal 

value for the determinant criterion was obtained as; 

     4454.27622.35)( 4
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0 v ▪ 

4.1.2.4 D- Optimal Slope Weighted Centroid Design with m Ingredients 

This section presents the general expressions that can be used to derive the D- optimal 

slope weight vector and the optimal value for the D-criterion for a mixture experiment 

with at least two ingredients. 

The information matrices of the weighted centroid designs involved in this study belong 

to the quadratic subspace,  HssymC ,  . According to (3.25), they can be uniquely 

represented in the form 
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with coefficients ga ,, , Klein (2004). The terms containing V2, W2 and W3 only 

occur for 3m  and 4m  respectively.  
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The matrix (4.124) according to (3.25a) can be partitioned according to the block 

structure,  
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For j=1,2, …, m, from (3.25c) we obtain 
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with blocks obtained using (3.25d) as follows: 

i) for j=1; 
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and  
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From (4.127) and (4.128) in equation (3.17) which we obtained the information matrix 

to be adjusted for slope as, 
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An inverse of a matrix in ),( Hssym  can be computed by solving a system of linear 

equations. By the same approach we obtained the blocks of the inverse 
1

0


C  partitioned 

as, 
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From the Kronecker second order regression function we get the slope matrix D using 

(3.12) as 
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The adjusted slope matrix was then obtained using (3.13) and written as; 
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This is an 
1

2

m
m

 
 
 

 matrix with K being the coefficient matrix as defined in (3.6). 
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Now a design that is D-slope optimal if and only if it satisfies condition (3.21). That is, 

a design is D-slope optimal for K   in T if, 
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jallforHtraceHHCCtraceH j   …………....……………… (4.133) 

For j=1 we evaluated the following requisite products of matrices: 

i) a product of (4.127), (4.130) and (4.132), 
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ii) a product of (4.132) and its transpose, 
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The trace of (4.135a) is, 
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after employing the ordinates of the support points in the m-ingredient mixture design, 

where, 
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Using (4.134b) and (4.135b) in condition (4.133) we obtained the equivalence relation, 
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Similarly, for j=2, we worked out the product of matrices (4.128), (4.130) and (4.132) 

getting, 
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The trace of (4.136a) is; 
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Using (4.135b) and (4.136b) in condition (4.133), we obtained the equivalence relation,      
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Therefore, for a design with m≥2 ingredients, we have the optimal slope weight vector 

for the D-criterion as; 
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Therefore, in the second-degree Kronecker model for mixture experiments with 2m  

ingredients, the unique D- optimal slope design for K  is 
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To obtain the optimal value )( 0v , first we adjusted the information matrix (4.129) for 

slope by pre- and post-multiplying by the adjusted slope matrix (4.132). This led to the 

matrix; 
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after employing the ordinates of the support points, where, 
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The adjusted information matrix has the determinant; 
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From equation (3.22), the determinant criterion, for a nonnegative definite matrix C of 

order s is given by;  
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At present the determinant criterion, is obtained for the information matrices of order 

s=m from the relation; 
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Using the determinant value (4.138b) and the equation (4.140) we got the maximum of 

the D criterion as,  
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4.2 Numerical Slope Optimal Weighted Centroid Designs 

We generated numerical p optimal slope weighted centroid designs for A- and D-

criteria for ]20,5[m . To do this, we employed the analytical results for the case of a 

design with m ingredients.  

4.2.1 Numerical D-Optimal Slope Weighted Centroid Designs  

The numerical p optimal designs presented here are as a result of proper utilization 

of the findings on the D-optimal slope design with m ingredients. In particular, we 
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present the values of D-optimal slope weight vector and the maximum of the 

determinant criterion for each of the values ]20,5[m . Going with these are values of 

the sums of the squares and cross products of the ordinates of the support points for 

each particular m ingredients design. These squares and cross products are gotten from 

the definitions of A and B in equation (4.134). The D-optimal slope weight vector is as 

given in (4.137) with corresponding maximum of the D-criterion as shown in (4.140b). 

They are as shown in table 3 below: 
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Table 3: Numerical D-slope optimal weighted centroid designs 

Number of 

ingredients 

m 

Sum of 

Squares 

A 

Sum of 

Cross- 

products 

B 

Optimal Weight Vector 
Optimal 

value  

)( 0v  
1  2  

5 2.956666667 0.810833333 0.824242895 0.175757105 4.083088547 

6 4.213888889 1.257222222 0.841664389 0.158335611 7.832687801 

7 6.203741497 1.989852608 0.855918137 0.144081863 16.62771156 

8 9.412648810 3.208907313 0.867797174 0.132202826 38.18245748 

9 14.67544092 5.262792108 0.877877555 0.122122445 93.37814928 

10 23.43789683 8.762455908 0.886562146 0.113437854 240.4342067 

11 38.22453430 14.78663748 0.894134633 0.105865367 646.0738788 

12 63.47665645 25.25212214 0.900800051 0.099199949 1799.201131 

13 107.0612923 43.58463589 0.906711612 0.093288388 5163.871038 

14 183.0007919 75.93949953 0.911987627 0.088012373 15206.46235 

15 316.4318502 133.4310583 0.916722030 0.083277970 45779.14297 

16 552.6509533 236.2191031 0.920991009 0.079008991 140480.2054 

17 973.6749457 421.0239924 0.924857331 0.075142669 438351.1759 

18 1728.665226 754.9902808 0.928373290 0.071626710 1388105.141 

19 3090.001406 1361.336179 0.931582823 0.068417177 4453420.629 

20 5556.938835 2466.937430 0.934523089 0.065476911 14455379.73 

As seen from the results, generally the first centroid 
1  is more weighted (

1 ) than the 

second centroid, 
2  . This implies that the response is principally a function of the pure 

ingredients. As the number of ingredients increase the weight value  
1  increases while 

2 decreases. This is an indication that in presence of many factors the response is 

dominated by the main effects concurring with the sparsity-of-effects principle.  This 

principle sometimes referred to as the hierarchical ordering principle, Wu et. al. (2000). 

The main factor effects dominate the two factor interaction effects. The D-optimal slope 

values increase with increase in the number of ingredients. 

4.2.2 Numerical A- Optimal Slope Weighted Centroid Designs  

The numerical p optimal designs presented here are as a result of proper utilization 

of the findings on the A-optimal slope design with m ingredients. We present the values 

of A-optimal slope weight vector and the maximum of the average variance criterion 
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for each of the values ]20,5[m . Together with these are values of the sums of the 

squares and cross products of the ordinates of the support points for each particular case 

of m ingredient design, since they are included in the working. These squares and cross 

products are gotten from the definitions of A and B in equation (4.134). The A-optimal 

slope weight vector is as given in (4.80) with corresponding maximum of the A-

criterion as shown in (4.80a). They are as shown in table 4. 

Table 4: Numerical A-slope optimal weighted centroid designs 

Number of 

ingredients 

m 

Sum of 

Squares 

A 

Sum of 

Cross- 

products 

B 

Optimal Weight Vector 
Optimal 

value  

)( 1v  1  2  

5 2.956666667 0.810833333 0.829201318 0.170798682 0.007233662 

6 4.213888889 1.257222222 0.845920916 0.154079084 0.004679335 

7 6.203741497 1.989852608 0.859735778 0.140264222 0.002956347 

8 9.41264881 3.208907313 0.871127459 0.128872541 0.001823532 

9 14.67544092 5.262792108 0.880686693 0.119313307 0.001099475 

10 23.43789683 8.762455908 0.888873427 0.111126573 0.000649383 

11 38.2245343 14.78663748 0.896007767 0.103992233 0.000376665 

12 63.47665645 25.25212214 0.902307370 0.09769263 0.000215101 

13 107.0612923 43.58463589 0.907923173 0.092076827 0.000121219 

14 183.0007919 75.93949953 0.912964364 0.087035636 6.75484E-05 

15 316.4318502 133.4310583 0.917513889 0.082486111 3.72831E-05 

16 552.6509533 236.2191031 0.921637573 0.078362427 2.04114E-05 

17 973.6749457 421.0239924 0.925389399 0.074610601 1.10969E-05 

18 1728.665226 754.9902808 0.928814627 0.071185373 5.99664E-06 

19 3090.001406 1361.336179 0.931951732 0.068048268 3.22354E-06 

20 5556.938835 2466.93743 0.934833707 0.065166293 1.72487E-06 

As seen from the results in table 4, generally the first centroid 
1  is more weighted than 

the second centroid, 
2  , since the weight candidate 

1  is greater  than 
2  . This implies 

that the response is predominantly a function of the pure ingredients. As the number of 

ingredients increase the weight value  
1  increases while 

2 decreases. This is an 

indication that in presence of many factors the response is dominated by the main 

effects. In this case, the main factor effects dominate the two factor interaction effects. 
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The findings here concur with the sparsity-of-effects principle. The A-optimal slope 

values decrease with increase in the number of ingredients. 

4.3 Sensory Evaluation Experiment 

We now present the analysis of the sensory experiment data for two, three and four 

selected fruits. Development of fruit blends is an important task to nutritionists. It is 

therefore important to have polynomial functions that describe accurately mixture 

properties in terms of compositions and pure blends that meet nutritional demands or 

taste preferences of consumers. The empirical models assist in coming up with 

formulations that attain optimal desired qualities of the fruit punch. Each fruit was taken 

individually and in combination with each of the other fruits. 

4.3.1 Two Ingredients Experiment 

We begin with the experiment with two fruits namely pine apple and pawpaw. The 

response was taken as the average score for the four attributes: taste, colour, texture and 

smell. Since each of the attributes are on the 1-15 scale, so is the response. The twelve 

data values are from three support points each replicated four times. The points 

comprised two pure blends and one binary blend.   

4.3.1.1 Fitted Model 

The estimates of the coefficients for the Kronecker model were obtained using SAS 

software package. The model is; 

)(375.20)(9)(125.10)(ˆ 22 pawpawpeneapplepawpawpineappleyEy   

4.3.1.2 Model Validity 

An analysis of the model validity was performed to examine the fitted model if it 

provides an adequate approximation of the true response surface. Analysis of variance 
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(ANOVA) was used to examine the Kronecker model. As is evident from the output 

below, 98.2% of the variation in the response is accounted for by the purposeful changes 

made on the ingredients. The overall model is highly significant with an estimated 

probability value less than 0.0001 (from table 5), much lower than the 0.05 and 0.01 

significant levels. 

Table 5: ANOVA for two ingredients Kronecker model  
                                                      The GLM Procedure 
Dependent Variable: yield 
                                                     Sum of 
            Source                      DF         Squares     Mean Square    F Value    Pr > 
F 
            Model                        3     1124.125000      374.708333     163.51    
<.0001 
            Error                        9       20.625000        2.291667 
            Uncorrected Total           12     1144.750000 
 
                                    R-Square     Coeff Var      Root MSE    yield Mean 
                                    0.981983      15.66026      1.513825      9.666667 
NOTE: No intercept term is used: R-square is not corrected for the mean. 

The t-test values were used to test for the significance of the individual parameters 

(hence factors) in the model. The test involves testing the hypothesis 0: ijoH   

against the alternative hypothesis 0:1 ijH   From table 6 below, all the coefficients 

are highly significant with very low estimated probability (Pr > |t|) values. 

Table 6: T-test Values for coefficients of the two ingredients Kronecker model  
             Standard 

                            Parameter         Estimate          Error    t Value    Pr > |t| 
                            pine*pine      10.12500000      0.75691259      13.38      <.0001 
                            paw*paw         9.00000000      0.75691259      11.89      <.0001 
                            pine*paw       20.37500000      3.21130814       6.34      0.0001 

The assumption of normality on the errors, clearly points to a similar distribution on the 

observations. By examination of the P-P and Q-Q plots from figure 1 below, there is no 

indication of any serious deviation from normality.  
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Figure 1: P-P and Q-Q plots 

 

4.3.1.3 Slope Information for the D-optimal Criterion 

The fitted model for the design with two ingredients can be written in a way to coincide 

with the Kronecker product as follows; 

2

21221

2

1 91875.101875.10125.10)(ˆ ttttttyEy  ,……………………….(4.141) 

where the two ingredients are symbolized as 1t represent  pineapple and 2t represent 

pawpaw. 

Using the definition of slope matrix (equation 3.12) and the regression function (4.141) 

the slope matrix for the design with two ingredients was obtained as; 
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The coefficient matrix (4.2) was then used in the definition for the adjusted slope matrix 

(3.13) to get the adjusted slope matrix; 
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To derive the D-optimal slope information matrix the information matrix (4.8) was pre- 

and post-multiplied with the slope matrix (4.143) to get the square information matrix 

(as defined in (3.19)), 
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After using the coordinates of the support points and the values of the D-optimal slope 

weight vector as from (4.93), simplified to; 

    









21875.27281515625.28058

15625.2805871875.341354

1600

1
C …………..………(4.144) 

Then the information function definition (3.22) was used with 0p , 2m  and the 

information matrix (4.144) to obtain the D-optimal slope information as; 

   9213469.189)(det)( 2

1

0  Cv  . 

4.3.1.4 Slope Information for the A-optimal Criterion 

To get the A- optimal slope value for the design with the two ingredients, first pre- and 

post-multiplication of the inverse of information matrix (4.10) with the adjusted slope 

matrix (4.143) was done, to get the requisite slope information matrix; 
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which after utilizing the ordinates of the support points led to the matrix; 
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with  

642535.5751
8

)4)(375.20(5

4

28125.6561
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1










traceC , ……………….(4.146) 

where the A- optimal slope weight vector is available from (4.19). 

The A- optimal slope information was gotten by using equation (3.22) with 1p , 

2m  and the trace (4.146) of the information matrix (4.145) as;  

4

11

1 1047726756.3
2

642535.5751

2
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
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



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
 traceCv  . 

4.3.2 Three Ingredients Experiment 

The three fruits that were involved in the experiment were: pine apple, pawpaw and 

banana. The response on a scale 1-15 was taken as the average score for the four 

attributes: taste, colour, texture and smell. The twenty-eight data values are from seven 
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support points for weighted design each replicated four times. The points comprised the 

three pure blends, three binary blends and a ternary blend.    

4.3.2.1 Fitted Model 

The estimates of the coefficients for the Kronecker model were obtained using SAS 

software package. The model is; 

bananapawpawbananapineapple

pawpawpeneapplebananapawpawpineappleyEy

*83.17*39.10

*70.17)(92.11)(35.9)(54.10)(ˆ 222




 

4.3.2.2 Model Validity 

 Analysis of the model validity was performed to examine the fitted model if it provides 

an adequate approximation of the true response surface. Analysis of variance 

(ANOVA) was used to examine the Kronecker model. As is evident from the output 

below, 96.3% of the variation in the response is accounted for by the purposeful changes 

made on the amounts of each fruit in the mixture. The overall model is highly significant 

with an estimated probability value less than 0.0001 (as is seen from table 7), much 

lower than the 0.05 and 0.01 levels of significance. 

Table 7: ANOVA for three ingredients Kronecker model  
                                                      The GLM Procedure 
Dependent Variable: yield 
                                                      Sum of 
            Source                      DF         Squares     Mean Square    F Value    Pr > 
F 
            Model                        6     2664.738593      444.123099      95.60    
<.0001 
            Error                       22      102.198907        4.645405 
            Uncorrected Total           28     2766.937500 
                                     R-Square     Coeff Var      Root MSE    yield Mean 
                                     0.963064      22.24847      2.155320      9.687500 
NOTE: No intercept term is used: R-square is not corrected for the mean. 

 

Student t-test values were used to test for the significance of the individual coefficients 

(hence fruits) in the model. A choice between the hypothesis 0: ijoH   and the 

alternative hypothesis 0:1 ijH  was made as guided by the rejection rule. From table 
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8 below, all the coefficients but that for the interaction between pineapple and banana, 

are highly significant with very low estimated probability (Pr > |t|) values at the 0.01 

level of significance. The interaction between pineapple and banana, unlike all the other 

coefficients, is insignificant at the 0.05 level of significance. 

Table 8: T-test Values for coefficients of the three ingredients Kronecker model 
                                                            Standard 
                             Parameter         Estimate        Error        t Value    Pr > 
|t| 
                             pine*pine      10.54083600      1.07358032       9.82      <.0001 
                             paw*paw         9.35333600      1.07358032       8.71      <.0001 
                             ban*ban        11.91583600      1.07358032      11.10      <.0001 
                             pine*paw       17.70245194      4.24979173       4.17      0.0004 
                             pine*ban       10.38995194      4.24979173       2.44      0.0230 
                             paw*ban        17.82745194      4.24979173       4.19      0.0004 

The assumption of normality on the errors, clearly points to a similar distribution on the 

observations. By examination of the P-P and Q-Q plots from figure 2 below, there is no 

indication of any serious deviation from normality. 

  

 

Figure 2: P-P and Q-Q plots                              
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4.3.2.3 Slope Information for the D-optimal Criterion  

The fitted model for the design with three ingredients can be written as follows; 

323121

2

3

2

2

2

1)(ˆ tfttettdtctbtatyEy  ……………………………….(4.147) 

where the three ingredients are pineapplet 1 , pawpawt 2 , bananat 3  and the 

coefficients assigned as: 

 ,38995194.10,70245194.17,915836.11,353336.9,540836.10  edcba  and 

82745194.17f . 

The definition of slope matrix (equation 3.12) and the regression function (4.147) were 

used to get the slope matrix for the design with three ingredients as; 
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The coefficient matrix (4.23) was then used in the definition for the adjusted slope 

matrix (3.13) to get the adjusted slope matrix; 
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fe
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………………………(4.148) 

To derive the D- optimal slope information matrix, the information matrix (4.29) was 

pre- and post-multiplied with the slope matrix (4.148) to get the square information 

matrix, 
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…..…(4.149) 

When coordinates of the support points for the three ingredients design and the values 

of the D-optimal slope weight vector from (4.106) are employed, (4.149) simplified to; 
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064.13838227832331.382771601972.2485019

32331.38277168143.8724479382088.3553766

01972.248501982088.3553766706.108773160

551232

1
C ….(4.150) 

Equation (3.22) was the used with 0p , 3m and the information matrix (4.150) to 

obtain the D- optimal slope information as; 

468662331.198)8861.7817642()(det)( 3

1

3

1

0  Cv  . 

4.3.2.4 Slope Information for the A-optimal Criterion 

To get the A-optimal slope value for the design with the three ingredients, first the 

inverse of information matrix (4.31) was pre- and post-multiplied with the adjusted 

slope matrix (4.148), to get the necessary slope information matrix; 
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After using the coordinates of the support points for the design with three ingredients 

simplified to the matrix; 
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where the A- optimal slope weight vector entries are available from (4.40). 

The A- optimal slope information was gotten by using equation (3.22) with 1p , 

3m   and the trace value (4.153) as;  
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4.3.3 Four Ingredients Experiment 

The four fruits that were involved in the experiment were: pine apple, pawpaw, banana 

and coconut. The response on a scale 1-15 was taken as the average score for the four 

attributes: taste, colour, texture and smell. The sixty data values are from fifteen support 

points for weighted design each replicated four times. The points comprised the four 

pure blends, six binary blends, four ternary blend and the four fruits together in the 

mixture.   

4.3.3.1 Fitted Model 

The estimates of the parameters for the Kronecker model were obtained using SAS 

software package. The model is; 

coconutbananacoconutpawpawbananapawpaw

coconutpineapplebananapineapplepawpawpeneapple
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4.3.3.2 Model Validity 

The analysis on the model validity was done to examine the fitted model if it provides 

a good approximation of the true response surface. Analysis of variance (ANOVA) was 

used to examine the Kronecker model. As is evident from the output table 9 below, 

96.67% of the variation in the response is accounted for by the purposeful changes made 

on the amounts of each fruit in the mixture. The overall model is highly significant with 

an estimated probability value less than 0.0001, much lower than the 0.05 and 0.01 

levels of significance. 

Table 9: ANOVA for the four ingredients Kronecker model  
                                                      The GLM Procedure 
Dependent Variable: yield 
                                                      Sum of 
              Source                      DF         Squares     Mean Square    F Value    Pr 
> F 
              Model                       10     5794.907380      579.490738     145.17    
<.0001 
              Error                       50      199.592620        3.991852 
              Uncorrected Total           60     5994.500000 
 
                                     R-Square     Coeff Var      Root MSE    yield Mean 
                                     0.966704      20.43951      1.997962      9.775000 
NOTE: No intercept term is used: R-square is not corrected for the mean. 

 

The t-test values were also used to test for the significance of the individual coefficients 

(hence fruits) in the model. The tested hypothesis was 0: ijoH   against the 

alternative hypothesis 0:1 ijH  . From the information below (in table 10), all the 

coefficients significant with small estimated probability (Pr > |t|) values at the 0.05 and 

0.01 levels of significance. The interaction between pawpaw and coconut, compared to 

the other coefficients, is the least significant. 
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Table 10: T-test Values for coefficients of the four ingredients Kronecker model  
                                             The GLM Procedure 
Dependent Variable: yield 
                                                                Standard 
                              Parameter         Estimate           Error    t Value    Pr > 
|t| 
                              pine*pine      11.16953443      0.98751632      11.31      
<.0001 
                              paw*paw        10.49541136      0.98751632      10.63      
<.0001 
                              ban*ban        10.12119869      0.98751632      10.25      
<.0001 
                              coco*coco       9.30566494      0.98751632       9.42      
<.0001 
                              pine*paw       24.67598681      3.63911375       6.78      
<.0001 
                              pine*ban       21.53760215      3.63911375       5.92      
<.0001 
                              pine*coco      16.40167588      3.63911375       4.51      
<.0001 
                              paw*ban        19.24769445      3.63911375       5.29      
<.0001 
                              paw*coco       10.86176818      3.63911375       2.98      
0.0044 
                              ban*coco       16.72338352      3.63911375       4.60      

<.0001 

The assumption of normality on the errors, clearly points to a similar distribution on the 

observations. By examination of the P-P and Q-Q plots in figure 3 below, there is no 

indication of any serious deviation from normality.  

     
 
 
 

        

Figure 3: P-P and Q-Q plots                              

 

4.3.3.3 Slope Information for the D-optimal Criterion  

The fitted model for the design with four ingredients can be written as follows; 
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where; 

 the four ingredients are pineapplet 1 , pawpawt 2 , bananat 3  and coconutt 4   

the coefficients are assigned as: 

 ,305664494.9,12119869.10,49541136.10,16953443.11  dcba  

86176818.10,24769445.19,40167588.16,53760215.2167598681.24  khgfe

 72338352.16m  

The definition of the slope matrix (equation 3.12) was invoked to give the slope matrix 

for the design with four ingredients as; 















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
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4242322122212

4232423221212

4232224232221

2000000000

0002000000

0000002000

0000000002

dttttttt

ttcttttt

ttttbttt

ttttttat

D

mkgmkg

mmhfhf

khkhee

gfegfe

 

The coefficient matrix (4.45) was then used in the definition for the adjusted slope 

matrix (3.13) to get the adjusted slope matrix; 












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








3424144

4424143

4434142
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0

0002000

0000200

0000020

0000002

tttdt

tttct

tttbt

tttat

DKH

mkg

mhf

khe

gfe

…… (4.155) 

To derive the D-optimal slope information matrix, the information matrix (4.51) was 

pre- and post-multiplied with the slope matrix (4.155) to give the square information 

matrix, 
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…...(4.156) 

After using the coordinates of the support points for the design with four ingredients, 

the coefficients from the model (4.154) and the D-slope optimal values of the derived 

weight vector (4.119), simplified to; 

    























4876.1585858.34553.27135.3

5858.33485.1893729.40498.5

4553.23729.49420.2028981.5

7135.30498.58981.54970.230

C …………... (4.157) 

Equation (3.22) was then employed with 0p , 4m  and the matrix (4.157) to obtain 

the D-slope optimal information as; 
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4.3.3.4 Slope Information for the A-optimal Criterion 

To get the A- optimal slope value for the design with the four ingredients, first the 

inverse of information matrix (4.53) was pre- and post-multiplied with the adjusted 

slope matrix (4.155), to derive the necessary slope information matrix; 













































































































































1

323121

1

3214

21

2

3

22

2

22

1

2

212

4

1

2
21

43

2

21

1

423241312

2

1

2

1

1

2

3

1

2

4

1

21

42

2

21

1

433241212

3

1

2

1

1

2

2

1

2

4

1

21

41

2

21

1

434231212

3

1

2

2

1

2

1

1

2

4

1

21

43

2

21

1

423241312

2

1

2

1

1

2

3

1

2

4

1

1

424121

1

4213

21

2

4

22

2

22

1

2

212

3

1

2
21

32

2

21

1

434231212

4

1

2

1

1

2

2

1

2

3

1

21

31

2

21

1

433241212

4

1

2

2

1

2

1

1

2

3

1

21

42

2

21

1

433241212

3

1

2

1

1

2

2

1

2

4

1

21

32

2

21

1

434231212

4

1

2

1

1

2

2

1

2

3

1

1

434131

1

4312

21

2

4

22

3

22

1

2

212

2

1

2
21

21

2

21

1

423241312

4

1

2

3

1

2

1

1

2

2

1

21

41

2

21

1

434231212

3

1

2

2

1

2

1

1

2

4

1

21

31

2

21

1

433241212

4

1

2

2

1

2

1

1

2

3

1

21

21

2

21

1

423241312

4

1

2

3

1

2

1

1

2

2

1

1

434232

1

4321

21

2

4

22

3

22

2

2

212

1

1

2

32

)(

32

))(12(16

32

)12(

64

)(

646422

32

)12(

64

)(

646422

32

)12(

64

)(

646422

32

)12(

64

)(

646422

32

)(

32

))(12(16

32

)12(

64

)(

646422

32

)12(

64

)(

646422

32

)12(

64

)(

646422

32

)12(

64

)(

646422

32

)(

32

))(12(16

32

)12(

64

)(

646422

32

)12(

64

)(

646422

32

)12(

64

)(

646422

32

)12(

64

)(

646422

32

)(

32

))(12(16

































































































tkmttgmttgktmtktgtdttmtktg
t

d

ttmtktthttgttftm
t

hk
t

fg
t

cm
t

dm

ttktmtthttgttetk
t

hm
t

eg
t

bk
t

dk

ttgtmttkttfttetg
t

fm
t

ek
t

ag
t

dg

ttmtktthttgttftm
t

hk
t

fg
t

cm
t

dm

thmttfmttfhtmthtftcttmthtf
t

c

tthtmttkttftteth
t

km
t

ef
t

bh
t

ch

ttftmtthttgttetf
t

gm
t

eh
t

af
t

cf

ttktmtthttgttetk
t

hm
t

eg
t

bk
t

dk

tthtmttkttftteth
t

km
t

ef
t

bh
t

ch

thkttekttehtkthtetbttkthte
t

b

ttetktthttgttfte
t

gk
t

fh
t

ae
t

be

ttgtmttkttfttetg
t

fm
t

ek
t

ag
t

dg

ttftmtthttgttetf
t

gm
t

eh
t

af
t

cf

ttetktthttgttfte
t

gk
t

fh
t

ae
t

be

tfgttegtteftgtftetattgtfte
t

a

C

 ....(4.158) 

After using the coordinates of the support points for the four ingredients design (4.158) 

simplified to the matrix; 
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where the A- optimal slope weight vector entries are from (4.62) and coefficient values 

from (4.154). 

The A- optimal slope information was gotten by using equation (3.22) with 1p , 

4m  and the trace value from (4.160) as;  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.0 Introduction 

This chapter covers the conclusions, recommendations and suggestions on arears of 

further research. 

5.1 Concluding Remarks 

The study has presented the necessary and sufficient condition for existence of p 

optimal slope mixture designs. The equivalence theorem was presented for the maximal 

parameter subsystem. For these cases the moment matrices are of full column rank. The 

unique parameter least squares estimates for the designs involved are the best. With this 

condition, optimal slope weighted centroid designs were derived for second degree 

Kronecker model for mixture experiments for the D- and A-optimal criteria. The 

designs were constructed for experiments with two, three and four ingredients. 

Analytically a general optimal slope design was constructed using the general forms of 

moment and information matrices for weighted centroid designs with m ingredients. It 

is important to note that the information functions for these designs are finite mappings 

on the real line. For the slope optimal models presented one has to take keen interest on 

the scaling of parameter estimates to compensate for the shielding effect between 

ingredients in any particular mixture experiment. 

One of the key task in this study was to establish numerical values of the restricted 

weight vector. It is evidently noted that both for A- optimal and D- optimal slope 

designs, the first weight is relatively larger than the second, for designs with two, three 

and four ingredients. This could be interpreted to mean the pure blends plays a major 

role in determining the response optimality values. They are therefore relatively more 
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significant. This is an indication that in presence of many factors the response is 

dominated by the main effects. In this case, the main factor effects dominate the two 

factor interaction effects. This definitely is in concurrence with the sparsity-of-effects 

principle. 

The statistical analysis of the sensory experiment data revealed that the Kronecker 

model adequately describes the data. This means the model fit is good for this kind of 

mixture experiments. Indeed, the Kronecker model with the weighted centroid design 

is very efficient considering the few support points that are necessary for a particular 

number of ingredients experiment. However, caution has to be exercised in determining 

the number of replications for two reasons. First, to allow for precise estimation of error 

variance. Second, to guarantee a good precision level for parameter estimates. 

5.2 Recommendations 

This study established that optimal slope designs are efficient in explaining the response 

for mixture experiments. It is recommended that the form of the Kronecker model 

discussed be utilized for analysis of simplex centroid designs. Least squares estimators 

are to be embraced since they are unique and unbiased for the maximal parameter 

subsystem.  

The analysis of the sensory experiment data revealed that the Kronecker model is a 

highly effective model to describe the response. The model is therefore recommended 

for situations where decisions are made on the amounts of the various components have 

to be decided to give desired properties of the mixture. 

5.3 Areas of Further Research 

This study concentrated on weighted centroid design to analyze the slope for the second 

degree Kronecker model for mixture experiments. A maximal parameter subsystem was 
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considered. Further analysis could be done for non-maximal parameter subsets of the 

full parameter vector. One may also consider other forms of the Kronecker model.  

The concept of optimal slope could also be extended to other mixture model forms like 

for axial designs, symmetric-simplex designs, extreme vertices designs, mixture 

amount and mixture process variable designs, among others. The underlying regression 

models may also be varied from the Kronecker model like the use of cox regression 

models. 

Further a need is here expressed on the research to analyze categorical responses in 

mixture experiments. It would also be interesting to explore nonlinear models.   



125 

 

 

 

 

REFERENCES 

Alam, N. M., Batra, P. K., Rajendar Parsad and Krishan Lal. (2014). Multifactor 

mixture experiments: Construction and analysis. International journal of 

Agricultural and statistical sciences, Vol. 10, Supp 1, 1-7. 

Aggarwal, M. L. and Singh, P. (2006). D-optimal designs in two orthogonal blocks for 

Darroch and Waller’s quadratic model in constrained mixture components. 

International journal of statistics. Metron LXIV (3):315-326. 

Aggarwal, M. L., Singh, P., Sarin, V. and Husain, B. (2008). Optimal orthogonal 

designs in two blocks hased on F-squares for Darroch and Waller’s quadratic 

mixture model in four components. Statistics and Applications. Vol. 6, Nos. 

1&2, 257-274. 

Aggarwal, M. L., Singh, P., Sarin, V. and Husain, B. (2013). Optimal orthogonal block 

designs for four-mixture components in two blocks based on F-squares for 

Becker’s models and K-model. A journal of theoretical and applied statistics. 

Vol. 47(5): 1003-1021. 

Atkinson, A. C. (1970). The design of experiments to estimate the slope of a response 

surface. Biometrika, 57, 319-328. 

Becker, N. G. (1968). Models for the response of a mixture. J. Roy. Statist. Soc. Ser. 

B. 30, 349-358. 

Box, G. E. P. and Draper, N. R. (1980). The variance functions of the difference 

between two estimated responses. J. Roy. Statist. Soc, B 42, 79-82. 

Box, G. E. P. and Hunter, T. S. (1957). Multifactor experimental designs for exploring 

response surfaces. Annals of mathematical statistics, 28, 195-241. 

Box, G. E. P. and Wilson K. B. (1951). On the experimental attainment of optimum 

conditions. Journal Royal Statistics, Soc. Sec. B, 13 1-45. 

Bradly Jones and Peter Goos. (2017). I-Optimal versus D-Optimal Split-Plot response 

Surface Designs. Journal of Quality Technology. Vol. 44, 1 85-101. 

Chan Ling-Yau. (2000). Optimal designs for experiments with mixtures: a survey. 

Communications in statistics – theory and methods. Vol. 29 (9-10), 2281-2312. 

Chan, L. Y., Meng, J. H., Jiang, Y. C. and Guan, Y. N. (1998). Theory and methods: 

D-optimal axial designs for quadratic and cubic additive mixture models. 

Australian and New Zealand journal of statistics. 40(3), 359-372. 

Chan, L. Y., Guan, Y. N. and Zhang, C. (1998a). A-optimal designs for an additive 

quadratic mixture model. Statistica Sinica. 8, 979-990. 

Chan, L. Y., Meng, J. H. and Jiang, Y. C. (1998b). D-optimal axial designs for 

quadratic and cubic additive mixtures model. Australian and New Zealand 

journal of statistics. 40, 901-913. 

Cheng, C. S. (1995). Complete class results for the moment matrices of designs over 

permutation-invariant sets. Annals of statistics, 23, 41-54. 



126 

 

 

 

 

Cornell, J. A. (1975). Some comments on designs for Cox’s mixture polynomial. 

Technometrics. 17, 25-35. 

Cornell, J. A. (1990). Designing experiments with mixtures. Second Edition. Willy 

New York. 

Cornell, J. A. (2002). Experiments with Mixtures, Third Edition. John Wiley, New 

York. 

Cox, D. R. (1971). A note on polynomial response functions for mixtures. Biometrika. 

58, 155-159. 

Darroch, J. N. and Waller, J. (1985). Additivity and interaction in three-component 

experiments with mixtures. Biometrika. 72, 153-163. 

Draper, N. R. and Pukelsheim, F. (1998). Mixture models based on homogeneous 

polynomials. Journal of statistical planning and inference, 71, 303-311. 

Draper, N. R., Heiligers, B. and Pukelsheim, F. (1998). Kiefer ordering of simplex 

designs for second-degree mixture models with four or more ingredients. 

Annals of statistics  

Draper, N. R. and Pukelsheim, F. (1999). Kiefer ordering of simplex designs for first- 

and second-degree mixture models. Journal of statistical planning and 

inference, 79, 325-348. 

Draper, N. R., Heiligers, B. and Pukelsheim, F. (2000). Kiefer ordering of simplex 

designs for mixture models with four or more ingredients. Annals of statistics, 

28, 578-590. 

Galil, Z. and Kiefer, J. C. (1977). Comparison of simplex designs for quadratic mixture 

models. Technometrics, 19, 445-453. 

Genning, C., Chinchilli, V. M. and Carter W. H. Jr. (1989). Response analysis with 

correlated data: a nonlinear model approach. Journal of American statistics 

association, 30, 95-104. 

Geoffrey Vinning, Scott M. Kowalski and Douglas C. Montgomery. (2018). Response 

surface designs within a split-plot structure. Journal of Quality Technology. 

Vol. 37. 1 115-129. 

Greg F. Piepel. (2007). A component slope linear model for mixture experiments. 

Quality Technology & Quantitative Management. Vol. 4 No. 3, 331-343. 

Hilgers, R. D. (2000). D-optimal designs for Becker’s minimum polynomial. Journal 

of statistical probability. Vol. 49, 175-179. 

Hilgers, R. D. and Heiligers, B. (2003). A note on optimal mixture and mixture amount 

designs. Statistica Sinica. 13(3): 709-725. 

Herzberg, A. M. (1967). The behavior of the variance function of the difference 

between two responses. J. Roy. Statist. Soc. B, 29, 174-179. 



127 

 

 

 

 

Huda, S. (2006a). Minimax designs for the difference between estimated responses for 

the quadratic model over hypercubic regions. Commun. Statist.- Theory meth. 

Huda, S. (2006b). Chapter 17: Design of experiments for estimating difference between 

responses and slopes of the response, in Response Surface Methodology and 

Related Topics (A. I. Khuri edited), 427-446, World Scientific Publishing Co. 

Huda, S. and Bankherouf. (2016). On the two- and three- dimensional D-minimax 

designs for estimating slopes of a third-order response surface. 

Communications in statistics – simulation and computation. Vol. 45, 6 1885-

1895. 

Huda, S. and Fatemah Alqallaf. (2019). Minimax designs for estimating slopes in a 

trigonometric regression model. Communications in statistics – theory and 

methods. Vol. 49, 21 5332-5341. 

Kiefer, J. C. (1959). Optimum experimental designs. J. Roy. Statist. Sec ser. B 21, 272-

304. 

Kiefer, J. (1960). Optimum experimental designs V, with applications to systematic 

and rotatable designs. Proceedings of 4th Berkeley symposium on mathematical 

and statistical probability. Vol. 1. University of California, Berkeley, pp. 381-

405. 

Kiefer, J. C. (1975). Optimal design: variation in structure and performance under 

change of criterion. Biometrika, 62, 277-288. 

Kiefer, J. C. (1978). Asymptotic approach to families of design problems. Comm. 

Statist. Theory methods, A7, 1347-1362. 

Kishen, K. (1940). Symmetrical unequal block arrangements with two unequal block 

sizes. Sankhya B5, 329-344. 

Klein, T. (2004). Invariant symmetric block matrices for the design of mixture 

experiments. Linear algebra and its applications. Vol. 388, 261-278. 

Klein, T. (2004). Optimal designs for second-degree kroneker model mixture 

experiments. Journal of statistical planning and inference, 123, 117-131. 

Kinyanjui, J. K. and Koske, J. K. (2007). Some optimal designs for second-degree 

Kronecker model mixture experiments.  Moi  University. 

Lee, W. C., Yusof, S., Hamid, N. S. A.  and Baharin, B. S. (2006). Optimizing 

conditions for enzymatic clarification of banana juice using response surface 

methodology. Journal of Food Engineering. Vol. 83, 55-63. 

Mert Gülüm, Murat Kadir Yesilyurt and Atilla Bilgin. (2019). The performance 

assessment of cubic spline interpolation and response surface methodology in 

the mathematical modeling to optimize biodiesel production from waste 

cooking oil. Elsevier Vol. 255, 115778. 

  



128 

 

 

 

 

Mitra, A., Panda, J. P. and Warrior, H. V. (2020). Experimental and numerical 

investigation of the hydrodynamic characteristics of autonomous underwater 

vehicles over sea-beds with complex topography. Ocean engineering, Vol. 198, 

106978. 

Montgomery, D. C. (2001). Design and Analysis of experiments. John Wiley and Sons, 

New York.  

Montgomery, D. C. (2015). Design and analysis of experiments, Fifth Edition. Wiley, 

New York. 

Mukesh Kumar Patidar, Sadhana Nighojkar, Anil Kumar and Anand Nighojkar. 

(2016). Papaya Peel valorization for production of acidic mehthylesterase by 

aspergillus tubingensis and its application to fruit juice clarification. Journal of 

Biocatalysis and Agricultural Biotechnology. Vol. 6, 58-67. 

Murkerjee, R. and Huda, S. (1985). Minimax second- and Third.order designs to 

estimate the slope of a response surface. Biometrika, 72, 173-178. 

Murty, J. S. and Das, M. N. (1968). Design and Analysis of Experiments. Annals of 

Mathematical Statistics. Vol 39. No. 5. 1517-1539. 

Murty, V. N. and Studden, W. J. (1972). Optimal designs for estimating the slope of a 

polynomial regression. J. Am. Statist. Assoc., 67, 869-873. 

Myres, R. H. and Lahoda, S. J. (1975). A generalization of the response surface mean 

square error criterion with a specific application to the scope. Technometrics, 

17, 481-486. 

Olusola Adedayo Adesina, Fatima Abdulkareen, Adeyinka S. Yusuf, Mayowa Lala and 

Akimdole Okewale. (2019). The performance assessment of cubic spline 

interpolation and response surface methodology in the mathematical modeling 

to optimize biodiesel production from waste cooking oil. Fuel. Vol. 255, 

115778.  

Ott, L. and Mendenhall, W. (1972). Designs for estimating the slope of a second order 

linear model. Technometrics, 14, 341-353. 

Prescott, P. (2008). Nearly Uniform Designs for Mixture Experiments. 

Communications in Statistics: Theory and Methods, 37, 2095-2115. 

Prescott, P. and Draper, N. R. (1998). Mixture designs for constrained components in 

orthogonal blocks. Journal of applied statistics. Vol. 25(5), 613-638. 

Prescott, P., Draper, N. R., Dean, A. M. and Lewis, S. M. (2002). Mixture experiments: 

Ill-conditioning and quadratic model specification. Technometrics. 44(3), 260-

268. 

Pukelsheim, F. (1993). Optimal design of experiments. Wiley, New York. 

Rabinda Nath Das, Partha Pal and Sung H. Park. (2015). Modified robust second-order 

slope-rotatable designs. Communications in statistics – theory and methods. 

Vol, 44, 1 80-94 



129 

 

 

 

 

Rahul Chamola, Mohd Fazil Khan, Anna Raj, Manthan Verma and Siddharth Jain. 

(2018). Response Methodoly based optimizatioof in situ transesterification of 

dry algae with methanol, H2SO4 and NaOH. Fuel Vol. 239, 511-520. 

Rajyalakshmi, K. and Victorbabu, B. Re. (2018). Construction of second order slope 

rotatable designs under tri-diagonal correlated structure of errors using 

symmetrical unequal block arrangements with two unequal block sizes. Journal 

of statistics and management systems. Vol. 21, 2 201-215. 

Saxena, S. K. and Nigam, A. K. (1973). Symmetric-simplex block dsigns for mixtures. 

Journal of royal statistical society: Series B (Methodological). Vol. 35, Issue 3 

466-472. 

Scheffe’, H. (1958). Experiments with mixtures. J. Roy. Statist. Soc. Ser. B 20, 344-

360. 

Scheffe’, H. (1963). The simplex-centroid design for experiments with mixtures. J. 

Roy. Statist. Soc. Ser. B 25, 235-257. 

Smith, K. (1918). On the standard deviations of adjusted and interpolated values of an 

observed polynomial function and its constants and the guidance they give 

towards a proper choice of the distribution of observations. Biometrika. Vol. 

12. No. 1/2, 1-85. 

Snee, R. D. and Marquardt, D. W. (1974). Extreme vertices designs for linear mixture. 

Technometrics. 16(3) 399-408. 

Sung H. Park, Hyang S. Jung and Rabindra Nath Das. (2009). Slope–rotatability of 

second order response surface regression models with correlated error. Quality 

technology & quantitative management Vol. 6. No 4. 471-492. 

Wambua A. M., Njoroge E., Koske, J., Mutiso, J., Kuria J. K., Muriungi, R. G. and 

Kipkoech, C. (2017). Optimal slope designs for second degree Kronecker 

model mixture experiments. International journal of applied mathematics and 

theoretical physics. Vol. 3, 4 86-91. 

Wu, C. F. Jeff and Hamada Michael. (2000). Experiments: Planning, analysis and 

parameter design optimization. Wiley, New York. 

Yuanzhi Huang, Kalliopi Mylona, Stephen G. Gilmour and Peter Goos. (2019). 

Optimal design of experiments for nonlinear response surface models. Journal 

of the royal statistical society: C applied statistics. DOI: 10.1111/rssc.12313. 

 

  



130 

 

 

 

 

APPENDICES 

Appendix 1: Questionnaire Used for Experimental Data Collection 

SAMPLE QUESTIONNAIRE 

Sensory evaluation and consumer acceptability 

You are invited in a study to taste the sensory attributes of items presented. You will be 

required to taste samples and rate the samples for intensity of each characteristic. If you 

have any prior experience of allergic reactions, you should not participate in the study. 

There is no direct benefit to you for participating in the study. You are free to withdraw 

from the study at any time. 

I understand the above information and voluntarily consent to participate in the study. 

Signature……………………….   Date…………………………………. 

(TICK (APPROPRIATELY) 

Socio- demographic characteristics 

1. Gender 

             Male                             Female 

2. Age 

     Below 20         20-22        23- 24          25-26           above 26  

3. Do you take any medication that may affect senses especially smell and taste? 

……………………………………………………………………………….. 

4. Do you have any food allergies? If so, please state 

Yes                             No 

5. What is your year of study? 

Year 3    Year 4  

 

6. Have you participated in a tasting panel another time? 

 

Yes                              No 

 

If yes, how many times? ………… 

 

7.  

8. Do you smoke   

Yes                              No 
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Sample Characteristics 

    SAMPLE LABEL:  ………………………...  

You are expected to describe your likeness of the product in the table using the scale 

below. 

 

 

Scale 

 

 

Description 

ATTRIBUTE 

Texture 

(mouth 

feel) 

Appearance 

(Colour) 

Taste  Aroma 

(Smell) 

15 Greatest imaginable like     

14 Greater imaginable like     

13 Great imaginable like     

12 Like extremely     

11 Like very much      

10 Like moderately     

9 Like slightly     

8 Neither like nor dislike     

7 Dislike slightly     

6 Dislike moderately     

5 Dislike very much     

4 Dislike extremely     

3 Great imaginable dislike     

2 Greater imaginable dislike      

1 Greatest imaginable dislike     

 

Would you recommend this product to a friend?  Give reason 

…………………………………………………………………………………………. 

…………………………………………………………………………………………. 

Would you buy this product in the market? Give reason 

…………………………………………………………………………………………. 

…………………………………………………………………………………………. 
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Appendix 2: Sensory Data for the Two Ingredients Experiment  

Label 

Combinations  ATTRIBUTES TOTAL MEAN 

pine 

apple paw paw texture colour Taste smell yield 1 yield 2 

2.11 1 0 11 10 12 13 46 11.5 

2.11 1 0 6 8 10 9 33 8.25 

2.11 1 0 8 9 10 11 38 9.5 

2.11 1 0 14 15 5 11 45 11.25 

2.12 0 1 10 11 7 5 33 8.25 

2.12 0 1 7 11 7 11 36 9 

2.12 0 1 11 12 7 12 42 10.5 

2.12 0 1 13 15 1 4 33 8.25 

2.13 0.5 0.5 9 10 10 11 40 10 

2.13 0.5 0.5 8 7 8 7 30 7.5 

2.13 0.5 0.5 10 11 9 10 40 10 

2.13 0.5 0.5 13 15 5 15 48 12 
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Appendix 3: Sensory Data for the Three Ingredients Experiment  

Label 

Combinations ATTRIBUTES TOTAL MEAN 

pineapple paw paw banana texture colour taste smell yield 1 yield 2 

3.11 1 0 0 13 11 12 10 46 11.5 

3.11 1 0 0 6 5 9 10 30 7.5 

3.11 1 0 0 8 14 13 12 47 11.75 

3.11 1 0 0 9 12 10 13 44 11 

3.12 0 1 0 2 12 11 4 29 7.25 

3.12 0 1 0 11 10 5 11 37 9.25 

3.12 0 1 0 9 11 4 9 33 8.25 

3.12 0 1 0 13 13 11 12 49 12.25 

3.13 0 0 1 14 15 9 11 49 12.25 

3.13 0 0 1 11 10 8 12 41 10.25 

3.13 0 0 1 10 13 11 14 48 12 

3.13 0 0 1 14 10 13 14 51 12.75 

3.14 0.5 0.5 0 9 11 12 11 43 10.75 

3.14 0.5 0.5 0 5 11 6 11 33 8.25 

3.14 0.5 0.5 0 7 12 8 11 38 9.5 

3.14 0.5 0.5 0 11 12 9 11 43 10.75 

3.15 0.5 0 0.5 11 9 10 10 40 10 

3.15 0.5 0 0.5 4 1 6 7 18 4.5 

3.15 0.5 0 0.5 10 11 12 12 45 11.25 

3.15 0.5 0 0.5 12 9 6 8 35 8.75 

3.16 0 0.5 0.5 9 11 9 8 37 9.25 

3.16 0 0.5 0.5 10 11 7 11 39 9.75 

3.16 0 0.5 0.5 6 11 4 7 28 7 

3.16 0 0.5 0.5 14 15 15 15 59 14.75 

3.17 0.333333 0.333333 0.333333 1 6 7 13 27 6.75 

3.17 0.333333 0.333333 0.333333 9 7 9 12 37 9.25 

3.17 0.333333 0.333333 0.333333 7 7 9 10 33 8.25 

3.17 0.333333 0.333333 0.333333 5 1 9 11 26 6.5 
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Appendix 4: Sensory Data for the Four Ingredients Experiment  

Label 

combinations ATTRIBUTES TOTAL MEAN 

pine 

apple pawpaw banana coconut texture colour taste smell Yield 1 yield 2 

4.01 1 0 0 0 10 8 10 12 40 10 

4.01 1 0 0 0 12 15 11 9 47 11.75 

4.01 1 0 0 0 8 9 11 11 39 9.75 

4.01 1 0 0 0 14 14 14 15 57 14.25 

4.02 0 1 0 0 9 12 8 12 41 10.25 

4.02 0 1 0 0 13 14 2 14 43 10.75 

4.02 0 1 0 0 12 15 9 14 50 12.5 

4.02 0 1 0 0 10 12 9 8 39 9.75 

4.03 0 0 1 0 4 5 5 13 27 6.75 

4.03 0 0 1 0 10 11 10 14 45 11.25 

4.03 0 0 1 0 8 6 11 10 35 8.75 

4.03 0 0 1 0 15 15 14 13 57 14.25 

4.04 0 0 0 1 10 12 9 9 40 10 

4.04 0 0 0 1 9 10 8 9 36 9 

4.04 0 0 0 1 15 10 10 8 43 10.75 

4.04 0 0 0 1 10 7 10 5 32 8 

4.05 0.5 0.5 0 0 10 10 10 9 39 9.75 

4.05 0.5 0.5 0 0 10 9 5 11 35 8.75 

4.05 0.5 0.5 0 0 9 7 10 9 35 8.75 

4.05 0.5 0.5 0 0 14 15 15 15 59 14.75 

4.06 0.5 0 0.5 0 13 9 12 10 44 11 

4.06 0.5 0 0.5 0 9 8 9 10 36 9 

4.06 0.5 0 0.5 0 9 9 10 11 39 9.75 

4.06 0.5 0 0.5 0 14 5 13 15 47 11.75 

4.07 0.5 0 0 0.5 10 13 4 14 41 10.25 

4.07 0.5 0 0 0.5 5 6 7 8 26 6.5 

4.07 0.5 0 0 0.5 9 8 8 15 40 10 

4.07 0.5 0 0 0.5 6 10 9 10 35 8.75 

4.08 0 0.5 0.5 0 10 11 12 10 43 10.75 

4.08 0 0.5 0.5 0 12 10 12 12 46 11.5 

4.08 0 0.5 0.5 0 6 8 7 9 30 7.5 

4.08 0 0.5 0.5 0 6 7 6 13 32 8 

4.09 0 0.5 0 0.5 10 8 7 12 37 9.25 

4.09 0 0.5 0 0.5 4 9 8 15 36 9 

4.09 0 0.5 0 0.5 5 9 5 9 28 7 

4.09 0 0.5 0 0.5 1 1 1 10 13 3.25 

4.10 0 0 0.5 0.5 4 8 11 14 37 9.25 

4.10 0 0 0.5 0.5 8 3 7 15 33 8.25 

4.10 0 0 0.5 0.5 10 7 12 11 40 10 

4.10 0 0 0.5 0.5 10 6 7 15 38 9.5 

4.11 0.333333 0.333333 0.333333 0 13 10 12 15 50 12.5 

4.11 0.333333 0.333333 0.333333 0 9 10 9 10 38 9.5 

4.11 0.333333 0.333333 0.333333 0 15 15 9 15 54 13.5 

4.11 0.333333 0.333333 0.333333 0 11 10 11 11 43 10.75 

4.12 0.333333 0.333333 0 0.333333 11 10 9 10 40 10 

4.12 0.333333 0.333333 0 0.333333 14 13 10 8 45 11.25 

4.12 0.333333 0.333333 0 0.333333 4 9 9 12 34 8.5 

4.12 0.333333 0.333333 0 0.333333 10 7 9 15 41 10.25 

4.13 0.333333 0 0.333333 0.333333 5 5 10 7 27 6.75 
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4.13 0.333333 0 0.333333 0.333333 9 6 10 7 32 8 

4.13 0.333333 0 0.333333 0.333333 9 9 10 10 38 9.5 

4.13 0.333333 0 0.333333 0.333333 5 13 7 15 40 10 

4.14 0 0.333333 0.333333 0.333333 6 9 6 15 36 9 

4.14 0 0.333333 0.333333 0.333333 5 7 4 6 22 5.5 

4.14 0 0.333333 0.333333 0.333333 12 9 10 13 44 11 

4.14 0 0.333333 0.333333 0.333333 3 7 5 12 27 6.75 

4.15 0.25 0.25 0.25 0.25 11 13 10 15 49 12.25 

4.15 0.25 0.25 0.25 0.25 9 8 11 10 38 9.5 

4.15 0.25 0.25 0.25 0.25 10 13 12 14 49 12.25 

4.15 0.25 0.25 0.25 0.25 9 7 10 13 39 9.75 
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Appendix 5: SAS Program Codes (Two Ingredients) 

DATA twoingredients; 

input pine paw yield; 

cards; 

1 0 11.5 

1 0 8.25 

1 0 9.5 

1 0 11.25 

0 1 8.25 

0 1 9.0 

0 1 10.5 

0 1 8.25 

0.5 0.5 10.0 

0.5 0.5 7.5 

0.5 0.5 10.0 

0.5 0.5 12.0 

; 

run; 

proc print data=twoingredients; 

run; 

proc glm; 

model yield=pine*pine paw*paw pine*paw/NOINT solution; 

estimate 'pine*pine paw*paw pine*paw' pine*pine 2 paw*paw 2 pine*paw 

1/divisor=2; 

run; 

Appendix 6: SAS Program Codes (Three Ingredients) 

DATA threeingredients; 

input pine paw ban yield; 

cards; 

1 0 0 11.5 

1 0 0 7.5 

1 0 0 11.75 

1 0 0 11 

0 1 0 7.25 

0 1 0 9.25 

0 1 0 8.25 

0 1 0 12.25 

0 0 1 12.25 

0 0 1 10.25 

0 0 1 12 

0 0 1 12.75 

0.5 0.5 0 10.75 

0.5 0.5 0 8.25 

0.5 0.5 0 9.5 

0.5 0.5 0 10.75 

0.5 0 0.5 10 

0.5 0 0.5 4.5 

0.5 0 0.5 11.25 

0.5 0 0.5 8.75 

0 0.5 0.5 9.25 

0 0.5 0.5 9.75 

0 0.5 0.5 7 

0 0.5 0.5 14.75 

0.333 0.333 0.333 6.75 

0.333 0.333 0.333 9.25 

0.333 0.333 0.333 8.25 

0.333 0.333 0.333 6.5 
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; 

run; 

proc print data=threeingredients; 

run; 

proc glm; 

model yield=pine*pine paw*paw ban*ban pine*paw pine*ban paw*ban/NOINT 

solution; 

estimate 'pine*pine paw*paw ban*ban pine*paw pine*ban paw*ban' 

pine*pine 3 paw*paw 3 ban*ban 3 pine*paw 1 pine*ban 1 paw*ban 

1/divisor=3; 

run; 

Appendix 7: SAS Program Codes (Four Ingredients) 

DATA fouringredients; 

input pine paw ban coco yield; 

cards; 

1 0 0 0 10 

1 0 0 0 11.75 

1 0 0 0 9.75 

1 0 0 0 14.25 

0 1 0 0 10.25 

0 1 0 0 10.75 

0 1 0 0 12.5 

0 1 0 0 9.75 

0 0 1 0 6.75 

0 0 1 0 11.25 

0 0 1 0 8.75 

0 0 1 0 14.25 

0 0 0 1 10.0 

0 0 0 1 9.0 

0 0 0 1 10.75 

0 0 0 1 8.0 

0.5 0.5 0 0 9.75 

0.5 0.5 0 0 8.75 

0.5 0.5 0 0 8.75 

0.5 0.5 0 0 14.75 

0.5 0 0.5 0 11.0 

0.5 0 0.5 0 9.0 

0.5 0 0.5 0 9.75 

0.5 0 0.5 0 11.75 

0.5 0 0 0.5 10.25 

0.5 0 0 0.5 6.5 

0.5 0 0 0.5 10.0 

0.5 0 0 0.5 8.75 

0 0.5 0.5 0 10.75 

0 0.5 0.5 0 11.5 

0 0.5 0.5 0 7.5 

0 0.5 0.5 0 8.0 

0 0.5 0 0.5 9.25 

0 0.5 0 0.5 9.0 

0 0.5 0 0.5 7.0 

0 0.5 0 0.5 3.25 

0 0 0.5 0.5 9.25 

0 0 0.5 0.5 8.25 

0 0 0.5 0.5 10.0 

0 0 0.5 0.5 9.5 

0.333 0.333 0.333 0 12.5 

0.333 0.333 0.333 0 9.5 

0.333 0.333 0.333 0 13.5 
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0.333 0.333 0.333 0 10.75 

0.333 0.333 0 0.333 10.0 

0.333 0.333 0 0.333 11.25 

0.333 0.333 0 0.333 8.5 

0.333 0.333 0 0.333 10.25 

0.333 0 0.333 0.333 6.75 

0.333 0 0.333 0.333 8.0 

0.333 0 0.333 0.333 9.5 

0.333 0 0.333 0.333 10.0 

0 0.333 0.333 0.333 9.0 

0 0.333 0.333 0.333 5.5 

0 0.333 0.333 0.333 11.0 

0 0.333 0.333 0.333 6.75 

0.25 0.25 0.25 0.25 12.25 

0.25 0.25 0.25 0.25 9.5 

0.25 0.25 0.25 0.25 12.25 

0.25 0.25 0.25 0.25 9.75 

; 

run; 

proc print data=fouringredients; 

run; 

proc glm; 

model yield=pine*pine paw*paw ban*ban coco*coco pine*paw pine*ban 

pine*coco paw*ban paw*coco ban*coco/NOINT solution; 

estimate 'pine*pine paw*paw ban*ban coco*coco pine*paw pine*ban 

pine*coco paw*ban paw*coco ban*coco' pine*pine 4 paw*paw 4 ban*ban 4 

coco*coco 4 pine*paw 1 pine*ban 1 pine*coco 1 paw*ban 1 paw*coco 1 

ban*coco 1/divisor=4; 

run; 

 

 


