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Abstract 
 
Manufacturing is an essential aspect to the global economy and prosperity. 
Many Manufacturing systems operate in an uncertain environment which 
affects the system performance. Production planning is very key in improving 
the overall manufacturing system performance. Systems that apply production 
planning approaches not considering uncertainties yield inferior planning 
decisions as compared to those that explicitly account for the uncertainty. 
Markov chains can be used to capture the transition probabilities as changes 
occur. Some existing literature on application of Markov chains in 
manufacturing systems has been reviewed. The objective is to give the reader 
beginning points about uncertainty modelling in manufacturing systems using 
Markov chains. 
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1. Introduction 
 
Manufacturing is described as the procedure of using raw materials, components or sub-
components to produce finished products that meet the customers’ requirements [1]. 
Characterization of manufacturing systems, like many other systems, can be dynamic or static, 
stationary (time-invariant)[2] or non-stationary (time-varying), linear or non-linear, discrete-
state (time) or continuous-state (time), event-driven or time-driven, and stochastic or 
deterministic [3] 
Manufacturing companies are facing a growing and rapid change where trends like 
globalization, customer orientation and increasing market dynamics have led to a move in both 
managerial and manufacturing principles which calls for more flexibility, fast and effectiveness 
[4].  
Product demand uncertainty is one of the challenges faced by manufacturing companies [5] 
and influences the performance of the manufacturing system and the final decision on utilizing 
the manufacturing system [6]. 
The criteria of performance like manufacturing lead times, inventory costs, customer 
satisfaction, machine utilization, meeting due dates, and quality of products all dependent on 
how efficiently the jobs are scheduled in the system [7]. Therefore it becomes increasingly 
important to develop effective production planning approaches that help in achieving the 
desired objectives. 
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Production planning has an important role in the manufacturing system. The more variety of 
products, increased number of orders, increased number and size of workshops and expansion 
of factories have all made production planning more complicated, making the traditional 
methods of optimization unable to solve them [4] 
Production planning in manufacturing systems is affected by a number of uncertainties which 
need to be considered in order to generate better planning decisions. [8] 
Markov chain is a powerful mathematical tool that is extensively used to capture the stochastic 
process of systems transitioning among different states [9]. 
When manufacturing systems reveal some random behavior (breakdowns, random time to 
process a part), markov chains can be used for modeling and performance evaluation [10]. 
Companies’ model manufacturing processes for many reasons, including predicting cost, 
predicting resource and material demand and running optimization studies. Basing future 
business simulations on these markov chains can give a more reliable representation of the 
business which reduces the risk of modelling inaccuracies and can help to predict future 
outcomes and run optimization more accurately [1].  
Due to significant importance of Markov chain models and their applications in manufacturing, 
additionally because the substantial amount of theoretical and practical results, it's of interest 
to supply a summary of their applications, and discuss future directions. To realize this, an 
instantaneous opening move is to classify the related literature and describe or review the main 
results. Such a piece can help readers to quickly picturize the realm, find interesting topics, and 
do further in-depth and detailed studies in specific areas. Particularly it can benefit those that 
are new the sector the most. Therefore, the main purpose of this paper is to produce a review 
on application of Markov chains in manufacturing systems. 
To gain a better understanding of the application of Markov chains in manufacturing systems 
and to provide a basis for future research, a broad review of some existing research on the topic 
has been presented. 
 
2. Basic concepts 
 
The concepts and theory applied in this study are presented in the section below. This study 
was centered on the theory of Markov Chains focusing on their application in manufacturing 
systems. A Markov chain may be a special sort of model. Manufacturing systems, the concepts 
of stochastic process, Markov chain, types of Markov chains, Markov chain model states, 
transition probability matrix, properties of Markov chains, classification of states and 
application areas are presented in sub sections as outlined below. 
 
2.1 Manufacturing systems 
 
A manufacturing system may be a network of interacting parts. Managing the network of 
interacting parts is as important as managing individual parts, if not so more. In manufacturing 
systems research, a lot of interesting fields come to mind, such as design, analysis, modeling, 
optimization and control [11].  
Manufacturing systems contain a number of several system factors among which exists work 
environment, physical structure, performance measurements, work organization, market & 
strategy, and manufacturing development process.[12]   
Most of the manufacturing companies are large, complex systems characterized by a number 
of decision subsystems, like finance, personnel, marketing, operations and operates in an 
uncertain environment.[13] 
A manufacturing system is an objective oriented network of processes through which entities 
flow with an objective of improving throughput or flow time.  
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It also contains processes that are not only physical, but can include support of direct 
manufacturing (e.g., order entry, maintenance). Due to variability in manufacturing systems, 
values of performance measures fluctuate, resulting in complexity. Therefore, models are 
required to imitate behavior of manufacturing systems. Together with variability, the evolution 
of manufacturing systems leads to a need for predicting behavior of the manufacturing systems 
[11]. 
 
2.2 Stochastic process 
 
A stochastic process may be a mathematical model that evolves over time in probabilistic 
manner [14]. A stochastic process is a random process [10], that is, a change in the state of 
some system over time whose course depends on chance and for which the probability of a 
particular course is defined. Essentially it is a family of random variables, X (t): t Є T defined 
on a given probability space, indexed by the time variable t, where t varies over an index set T 
[15].  
A stochastic process may be continuous or discrete. A stochastic process is claimed to be a 
discrete time process if set T is finite or countable. That is, if T= (0, 1, 2, 3 ,4…….. , n) resulting 
in the time process X(0), X(1), X(2), X(3), X(4), …….., X(n) , recorded at time 0,1,2,3,4……,n 
respectively [16]. On the other hand stochastic processes X (t): t Є T is considered a continuous 
time process if T is not finite or countable. That is, if T= [0, ∞) or T= [0, k] for some value k. 
A state space S is the set of states that a stochastic process can be in. The states can be finite or 
countable hence the state space S is discrete, that is S=1, 2, 3…, N. Otherwise the space S is 
continuous [17]. 
 
2.3 Markov chain  
 
Markov chain, named after a Russian mathematician Andrey Markov in 1907, is a powerful 
mathematical tool that is used widely to capture the stochastic process of systems transitioning 
among different states [9]. Markov chains were recognized rapidly for their significant power 
of representation and their possibility of modeling a wide range of real life problems in addition 
to the quality of performance indices they give [10]. When manufacturing systems reveal some 
random behavior, Markov chains can be used to carry out performance evaluation and 
modeling [18]. 
A Markov chain, special type of stochastic process (with a Markov property [19]), is a discrete-
time stochastic model defined on a space of states, equipped with transition probabilities from 
one state to another at the next time stage [20]. 
Markov Chains have revealed their strength at modeling stochastic transitions, from 
uncovering sequential patterns to directly modeling decision processes [21]. These have got a 
special property that probabilities involving how the process will evolve in the future depend 
only on the present state of the process, and so are independent of events in the past [22].  
A Markov process is a stochastic process that satisfies the Markovian property (says that the 
conditional probability of any future “event,” given any past “event” and the present state Xt-
i, is independent of the past event and depends only upon the present state[17], [15]). It is a 
sequence of random variables ܺଵ, ܺଶ, ܺଷ, … . ܺ௡ with the Markovian property, namely that, 
given the present state, the future and past state is independent. Formally[23],  

௥ܲ ቀܺ௡ା௥ =
௫

௑భ
, = ,ଵݔ ܺଶ = ,ଶݔ … . ܺ௡ = ௡ቁݔ = ௥ܲ ቀܺ௡ା௥ =

௫

௑೙
, =  ௡ቁ,  (1)ݔ

if both conditional probabilities are defined, i.e. if ௥ܲ(ܺଵ = ,ଵݔ … . ܺ௡ = (௡ݔ > 0 the possible 
values of ܺ௡ form a countable set S called the state space of the Chain [4]. 
Markov Chains often described by a sequence of directed graphs, where the edges of the graph 
n labeled by the probabilities of going from one state at time n to another state at time(n + 1),  



 International journal of industrial engineering and operational research (IJIEOR), Vol. 3, No. 1, Pages 1-13 
 

 

௥ܲ ቀܺ௡ା௥ =
௫

௑೙
, =  ௡ቁ        (2)ݔ

However, Markov Chains assumes time-homogenous scenarios[24], in which case the graph 
and matrix are independent of n and not presented as sequences [4]. 
 
2.3.1 Types of Markov chains 
 
There are two differing types when approaching Markov chains which is, discrete-time Markov 
chains and continuous-time Markov chains. This means that there are scenarios where the 
changes happen at specific states and others where the changes are continuous [25].  
 
Discrete-Time Markov Chains (DTMC) 
These are Markov chains that are observed only at discrete points in time (e.g., the end of each 
day) rather than continuously. Each time it is observed, the Markov chain can be in any one of 
a number of states [26].  
 
 
 
 
 
 
 

Fig. 1. Discrete-Time Markov Chains [27]  
 
P {system stays in state A for N time units | as long as the system is currently in state A} = pN 
P {system stays in state A for N time units before exiting from state A} = pN(1-p) 
 
State changes are pre-ordained to occur only at the integer points 0, 1, 2, ......, n (that is at the 
time points t0, t1, t2,......, tn)[28] [29] 
The sequence of random variables X1, X2, ....... forms a Markov Chain if for all n (n = 1, 2, 
........) and all possible values of the random variables, giving; 

ܲ ቄ ௑೙ୀ௝

௑భୀ௜భ________௑೙షభୀ௜೙షభ
ቅ =  ܲ ቄ ௑೙ୀ௝

௑೙షభୀ௜೙షభ
ቅ       (3) 

 
Continuous-time Markov Chains (CTMC)  
A continuous-time Markov chain changes at any time (State changes may occur anywhere in 
time) [26].  
A Markov chain with continuous time is a stochastic process with Markov characteristics 
whose future state conditional probability, depends on present state which have no relation to 
past state of process [30]. 

 
 
 
 
 
 
 

Fig. 2. Continuous -Time Markov Chains [27]  
 
P{system in state A for time T | system currently in state A}  

=  (1 − (ݐ∆ߤ
೅
∆೟ → ݁ିఓ் ݐ∆              → 0      (4) 

p  

1-  p  

A  

1-µΔt  

µΔt 

A  
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2.3.2 Markov chains exploration 
 
Markov chains model discrete-time processes and Markov processes models continuous-time 
processes. They mathematically model a process by showing how the method can move 
between different stages and therefore the probability of creating these transitions.  
Markov’s analysis can be represented diagrammatically as in figure 1 which shows a Markov 
chain model of a process with two stages A1 and A2, where the probability of making a 
transition from stage i to stage j is ݍ௜௝   [1]. 
 
 
 
 
 
 
  
 
 
 

Fig. 3. Markov Chain Diagram [1] 
 
2.4 Markov Chain Model States 
 
The Markov chain model is a sequential process that consists of many steps. For those steps 
considered as Markov Chain states, they should respect all the following three conditions:  

1. “State i communicates itself”  
2. “If state i communicates with state j, then j communicates with state i.”  
3. “If state i communicates with state j, and j communicates with state k, then i 

communicates with state k.”  
According to [4], the probability of going from state i to state j in n time steps is given by: 

P௜௝
(௡) = ௥ܲ ቀܺ௡ =

௝

௑బ
, = iቁ and the single step transition is ௜ܲ௝ = ௥ܲ ቀܺଵ =

௝

௑బ
, = iቁ 

For a time-homogenous Markov Chain, the probability is: P௜௝
(௡) = ௥ܲ ቀܺ௡ା௞ =

௝

௑ೖ
, = iቁ and 

௜ܲ௝ = ௥ܲ ቀܺ௞ାଵ =
௝

௑ೖ
, = iቁ. A Markov Chain of order m, where m is finite, may be a process 

satisfying 

௥ܲ ൬ܺ௡ =
௡ݔ

ܺ௡ିଵ
, = ,௡ିଵݔ ܺ௡ାଶ = ,௡ିଶݔ … . ܺଵ = ଵ൰ݔ

= ௥ܲ ൬ܺ௡ =
௡ݔ

ܺ௡ିଵ
, = ,௡ିଵݔ ܺ௡ାଶ = ,௡ିଶݔ … . ܺ௡ି௠ = ௡ି௠൰ݔ ݊ ݎ݋݂  > ݉ 

In other words, the future state depends on the past m states. It is possible to construct a Chain 
௡ܻ from ܺ௡ which has the ‘classical’ Markov property by taking as state-space the ordered m 

tuples of x values, i.e. ௡ܻ = (ܺ௡, ܺ௡ିଵ, … . , ܺ௡ି௠ାଵ) [4] 
 
2.5 Transition Probability Matrix 
 
Transition probabilities are conditional probabilities P (X t+1 = j/ X t =i} = ௜ܲ௝  arranged in the 
form of a n x n matrix called the transition probability matrix given by: 

൭
11݌ 12݌ … 1݊݌
21݌ 22݌ … 2݊݌
1݊݌ 2݊݌ … ݊݊݌

൱   which can be denoted as P = ௜ܲ௝  
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The transition matrix shows the probability of transitioning between the row stage to the 
column stage. To form a Markov chain model the transition probabilities are required and are 
calculated using the equation below which determines the probability of making a transition 
from stage i to stage j, which is represented by ௜ܲ௝ . Where m is the total number of transitions 
and ݊௜௝ is the number of transitions from i to j [1]. 

௜௝݌     =
௡೔ೕ

∑ ௡೔,ೖ
೘
ೖసభ

        (5) 

 
The Transition Probability Matrix has the following properties: [15] 

1. ௜ܲ௝  > 0 for all i and j. 
2. For all i and j, sum of the element in each row is equal to 1. The sum represents total 

probability of transition from state i to itself or the other state. 
3. The diagonal element represents transition from one state to same state. 

Markov Chain models are useful in studying the evolution of systems over repeated trials. The 
repeated trials are often successive time periods where the state of the system in any particular 
period cannot be determined with certainty. Rather, transition probabilities are used to describe 
the way during which the system makes transitions from one period to subsequent. It helps us 
to determine the probability of the system being in a particular state at a given period of time 
[31]. 
 
2.6 Properties of Markov chains 
 
Periodicity 
A state i has period k if any return to state i must occur in multiple of k time steps. Formally, 
the period of a state is defined as: 

K = gcd ቄ݊: ௥ܲ ቀܺ௡ = ݅
ܺ଴ = ݅ൗ ቁ > 0ቅ      (6) 

(where “gcd” is the greatest common division). Note that even though a state has period k, it 
may not be possible to succeed in the state in k steps. For example, suppose it is possible to 
return to the state in {6, 8, 10, 12….} time steps; k would be 2, even though 2 does not appear 
in this list. 
If k = 1, then the state is claimed to be a periodic: returns to state i can occur at irregular times, 
in other words, a state i is aperiodic if there exists n such that for all ݊ଵ ≥ 0 

௥ܲ ൬ܺ௡
ଵ = ݅

ܺ଴ = ݅൘ ൰ > 0        (7) 

Otherwise(݇ > 1), the state is said to be periodic with period k. a Markov Chain is aperiodic 
if every state is aperiodic. An irreducible Markov Chain only needs one aperiodic state to imply 
all states are aperiodic. Every state of a bi partite graph has an even period. [4], [15]. 
 
Recurrence 
A state i is said to be transient if, given that the system start in state i, there is a non-zero 
probability that the system will never return to i formally, but the random variable Ti be the 
first return time to state i (the “hitting time”): [4] 

 ௜ܶ = ݂݅݊ ቄ݊ ≥ 1: ܺ௡ = ݅
ܺ଴ = ݅ൗ ቅ       (8) 

The number ௜݂௜
(௡) = ௥ܲ( ௜ܶ = ݊) is the probability that state is returned to for the first time after 

n steps. Therefore, state i is transient if 

௥ܲ( ௜ܶ <∝) = ∑ ௜݂௜
(௡) <ஶ

௡ୀଵ 1       (9) 
State i is recurrent if it is not transient. Recurrent states are guaranteed to have a finite hitting 
time [15]. 
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Ergodicity 
A state i is said to be ergodic if it is periodic and positive recurrent. In other words, a state has 
a period of 1 and it has finite mean recurrence time. If all states in an irreducible Markov chain 
are ergodic, then the chain is claimed to be ergodic. It can be shown that a finite state irreducible 
Markov chain is ergodic if it’s a periodic state. 
A model has the ergodic property if there's a finite number such that any state can be reached 
from any other state in exactly N steps. In case of a fully connected transition matrix where all 
transitions have a non-zero probability, this condition is fulfilled with N = 1. That is a Markov 
chain is ergodic if there exists some finite k such that; 

ܲ ൜ܺ(ݐ + ݇) = ݆
(ݐ)ܺ = ݅൘ ൠ > 0 for all i and j [15] 

A model with more than one state and just one out transition per state cannot be ergodic. 
 
Reducibility 
A state j is claimed to be accessible from a state a system started in state i has a non-zero 
probability of transitioning into state j at some point. Formally, state accessible from state i if 
there exists an integer ݊௜௝ ≥ 0 such that  

௥ܲ(ܺ௡ = ݆ ܺ଴ = ݅⁄ ) = ௜௝݌
௡೔ೕ > 0     (10) 

This integer is allowed to vary for every pair of states, hence the subscripts in nij. Allowing n 
to be zero means that every state is defined to be accessible from itself. A state i is said to 
communicate with state j (written ݅ ↔ ݆) if both ݅ → ݆ and ݆ → ݅. A set of states C may be a 
communicating class if every pair of states in C communicates with each other, and no state in 
C communicates with any state not in C. It may be shown that communication in this sense is 
an equivalence relation and thus that communicating classes are the equivalence classes of this 
relation. A communicating class is closed if the probability of leaving the category is zero, 
namely that if i is in C but j isn’t, then j isn’t accessible from i. 
A state i is claimed to be essential or final if for all j such that ݅ → ݆ it’s also true that ݆ → ݅. A 
state i is inessential if it’s not essential. A Markov chain is claimed to be irreducible if its state 
space may be a single communicating class; in other words, if it’s possible to get to any state 
from any state [15]. 
 
2.7 Classification of states of a Markov chain 
 
Recurrent States  
A state is claimed to be a recurrent state if, upon entering this state, the method definitely will 
return to the present state again. Therefore, a state is recurrent if and as long as it’s not transient. 
Since a recurrent state definitely will be revisited after each visit, it will be visited infinitely 
often if the process continues forever [32]. 
If the method enters a particular state then stays during this state at the subsequent step, this is 
often considered a return to the present state. Hence, the following kind of state is a special 
type of recurrent state [26]. 
 
Transient States 
A state is claimed to be a transient state if, upon entering this state, the method may never 
return to the present state again. Therefore, state i is transient if and as long as there exists a 
state j ( j≠ i) that’s accessible from state i but not the other way around, that is, state i is not 
accessible from state j [33]. 
Thus, if state i is transient and the process visits this state, there is a positive probability 
(perhaps even a probability of 1) that the process will later move to state j and so will never 
return to state i. Consequently, a transient state will be visited only a finite number of times[26]. 
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When starting in state i, another possibility is that the process definitely will return to this state 
[34]. 
The Markov process is transient if the state can only be visited a finite number of times 
otherwise, the state is recurrent[11]. 
 
Absorbing states 
In an absorbing Markov chain model, the Markov chain may include circles and it theoretically 
allows an infinite number of circulations among certain process states [35] 
A state is claimed to be an absorbing state if, upon entering this state, the process never will 
leave this state again. Therefore, state i is an absorbing state if and only if ௜ܲ௜ = 1 [33] 
A Markov chain with one or more absorbing states is understood as absorbing Markov chain. 
An absorbing state is, because the name implies, one that endures. In other words, when a 
work-part reaches such a state, it never leaves the state [36]. 
 
2.8 Areas of application of Markov chains 
 
Markov chains are used in a variety of situations since they can be considered to model many 
real-world processes. These fields include, to mention but a few, quality management [37], 
system performance (reliability & availability)[38], electronics [35], condition monitoring 
[39], physics, chemistry, computer science, queuing theory, economics, games, and sports [23].  
 
3. Markov models in manufacturing  
 
In an effort to gain a better understanding of the markov chains and its application in 
manufacturing, and to provide a basis for future research, a broad review of some existing 
research on the subject has been presented. 
Table 1 gives a summary of citations on Markov models in manufacturing. A complete of 42 
citations on Markov models in manufacturing were reviewed. The majority of the citations 
were found in journals (78.571%), proceedings, conferences and others (11.905%), books 
(4.762%) and published PhD Thesis (4.762%). 
 

Table 1: Summary of citations on Markov models in manufacturing 
Source Number of citations % total 
Journal of Industrial Engineering 1 2.381 
Procedia Manufacturing 2 4.762 
International Journal of computer science issues 1 2.381 
Conference proceedings 5 11.905 
Thesis  2 4.762 
Journal of Mathematics and Statistics  1 2.381 
Book 2 4.762 
International journal of industrial engineering and operational 
research (IJIEOR) 

1 
2.381 

UPB Scientific Bulletin, Series D: Mechanical Engineering 2 4.762 
International Journal of Energy Research 2 4.762 
Periodica Polytechnica Social and Management Sciences  1 2.381 
Nuclear Engineering and Design  1 2.381 
Journal of Advanced Mechanical Design, Systems and Manufacturing 1 2.381 
Journal of the Operational Research Society 1 2.381 
International Journal of Engineering Research & Technology 1 2.381 
Advances in Science and Technology Research Journal 1 2.381 
International Journal of Production Economics 2 4.762 
Journal of Cleaner Production 2 4.762 
International Journal of Current Research 2 4.762 
Journal of Banking Financial 1 2.381 
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Computers and Chemical Engineering 1 2.381 
Computers & Industrial Engineering 2 4.762 
Quality Engineering  1 2.381 
Manufacturing and Service Operations Management  1 2.381 
Journal of Industrial Mathematics  1 2.381 
Applied Sciences (Switzerland)  1 2.381 
IJISET-International Journal of Innovative Science, Engineering & 
Technology 

1 
2.381 

Acta Mathematica Scientia  1 2.381 
Annals of the Academy of Romanian Scientists Series on Engineering 
Sciences 

1 
2.381 

Total  42 100 

 
Table 2 provides a summary of the classification scheme of the literature addressed in this study 
about the Markov models in manufacturing, giving the research topic, nature of uncertainty, 
research approach and conclusions drawn. 
 

Table 2: Classification scheme of literature on Markov models in manufacturing 
References Research topic Uncertainty Approach detail Conclusion  
Leigh et al., 
2017 [1] 

Modelling manufacturing 
processes 

Human 
interaction 
& variable 
products 

Radio Frequency 
Identification 
(RFID) 

Created a Markov 
chain model used to 
predict future 
product paths for 
use in discrete 
event simulation 

Tochukwu et 
al., 2015 [4] 

Agent Based Markov Chain 
for Job Shop Scheduling and 
Control 

Dynamic 
market 
changes 

Scheduling 
algorithms 

Developed an agent 
based model where 
all information of 
the dynamics of the 
model was 
formulated as a 
Markov chain 

Kiassat et 
al., 2013 
[19] 

Effects of operator learning 
on production output 

Operator 
learning 

Proportional 
hazards model 

Developed a 
Markov chain 
approach to forecast 
production output 
of a human-
machine system, 
considering HR 
factors and operator 
learning. 

Gingu & 
Zapciu, 2017 
[10] 

Synchronizing the 
manufacturing production 
rate with real market 
demand 

Market 
demand 

Markov chains 
and 
decomposition 
method, C++ 

Offered a solution, 
by avoiding 
intermediary stocks 
at the same time, 
and a predictable 
market demand of 
these products 
(balancing between 
demand and 
production) 

Ye et al., 
2019 [9] 

Modeling for reliability 
optimization of system 
design & maintenance based 
on Markov chain theory 

System 
failures and 
repairs 

Continuous- time 
Markov chain 

Proposed a non-
convex MINLP 
model 

Chatys, 2020 
[2] 

Application of the Markov 
Chain Theory in Estimating 
the Strength of Fiber-
Layered Composite 

Static strength 
and fatigue life 

Vacuum bag 
method 
(mathematical 
model) 

MM can be used for 
“predicting” the S-
N curve, taking into 
account the 
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Structures with Regard to 
Manufacturing Aspects 

maximum volume 
share of 
reinforcement in the 
composite and 
manufacturing 
technology 

Sastri et al., 
2001 [34] 

Markov chain approach to 
failure cost 
Estimation in batch 
manufacturing 

Failure cost 
estimation 
(repair/rework) 

Markov chain 
approach, 

Showed how a 
markov chain 
model is used to 
estimate a fore 
mentioned activity 
based failure costs 

Santhi, 2019 
[16] 

Markov decision process in 
supply chain management 

Inventory 
levels 

Markov decision 
process 

Determined the 
service rates to be 
employed as a 
function of the 
number of 
customers in the 
queue and the 
amount of 
inventory on hand 
minimizing the 
long-run expected 
cost rate. 

Mubiru, 
2013 [5] 

An EOQ Model For Multi-
Item Inventory With 
Stochastic Demand 

Demand Markov decision 
process 

Demonstrates the 
existence of an 
optimal state 
dependent 
EOQ, produces 
optimal ordering 
policies and the 
corresponding total 
inventory costs for 
items. 

Boteanu & 
Zapciu, 2017 
[18] 
 

Modeling and simulation of 
manufacturing flows for 
optimizing the number of 
work pieces on buffers from 
manufacturing systems 

Failures, 
demand 
modifications, 
breakdown 

Markov chains, 
Decomposition 
method, discrete 
event simulation  

Dynamic adaptation 
of the production 
rate by optimizing 
the buffers 
according to the 
effective demand or 
estimated demand 
of the market. 

Janicijevic et 
al., 2014 
[37] 

Using a markov chain for 
product quality 
Improvement simulation 

Customer 
requirements 

Simulation Modelled the 
stochastic processes 
of a system of 
quality 
management and 
selection of the 
optimum set of 
FIPQ. 

Sharma & 
Vishwakarm
a, 2014 [38] 

Application of Markov 
Process in Performance 
Analysis of 
Feeding System of Sugar 
Industry 

Systeme 
performance 
(failures) 

Markov 
modelling 

The system can be 
analyzed easily by 
concerning the 
process as Markov 
process and it helps 
the system design 
analyst to select the 
most appropriate 
structural 
components.  
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Pillai & 
Chandrasekh
aran, 2008 
[36] 

An absorbing Markov chain 
model for production 
systems 
with rework and scrapping 

Scrapping and 
reworking 

Probabilistic 
model 

Identifies 
production system 
parameters under 
scrapping and 
reworking, and 
accurately estimates 
the quantity of raw 
materials required. 

Afrinaldi, 
2020 [23] 

Exploring product lifecycle 
using Markov chain  

 Behavior of 
the product  
 

Markov chain Number of trips & 
duration of stay of a 
product in a 
lifecycle stage, no. 
of products visiting 
a specific lifecycle 
stage, probability of 
a product being 
discarded, and the 
expected total 
environmental 
impact of the 
product are 
predicted  

Sobaszek et 
al., 2020 
[24] 

Predictive Scheduling with 
Markov Chains and 
ARIMA Models 

Machine 
failure 

Markov process Inclusion of 
machine failure in 
the production 
schedule results in 
the extension of the 
performance 
indicators, mean 
flow time, mean job 
completion time, 
and the central 
criterion describing 
the performance of 
the production 
system 

Strachan et 
al., 2009 
[39] 

A Hidden Markov Model 
for Condition Monitoring of 
a manufacturing drilling 
process. 

Tool wear and 
impending 
failure 

Algorithm; hidden 
Markov model 

presented an 
algorithm for the 
condition 
monitoring of a 
manufacturing 
drilling process that 
will be able to 
detect tool wear and 
impending failure 

Jónás et al., 
2014 [35] 

Application of Markov 
Chains for Modeling and 
Managing Industrial 
Electronic Repair Processes 

Repairs Absorbing 
markov chain 

Modeling repair, 
manufacturing & 
business processes 
as acyclic absorbing 
Markov chains can 
ground many 
process 
management 
activities, enable 
managers to 
determine the 
probability 
distribution of lead 
time of any 
repairing process. 
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Beijsens & 
Rooda, 2005 
[11] 

Markov based modeling of 
manufacturing systems 
dynamics 

Manufacturing 
system 
properties 

Markov theory Control a discrete 
manufacturing 
system with a 
continuous 
controller. And the 
continuous model 
validated with a 
discrete-event 
model 

Karim & 
Nakade, 
2020 [25] 

A Markovian production-
inventory system with 
consideration of random 
quality disruption 

Product 
quality 
disruption 

 Stochastic model Under the situation 
of production time 
constraint, the 
integration of safety 
stock in an 
interruption prone 
production–
inventory system, 
assists in improving 
the average cost 
function.  

Abedi et al., 
2009 [30] 

Using Markov Chain to 
Analyze Production Lines 
Systems with Layout 
Constraints 

Layout 
constraints 

Hybrid model 
(Markov chain in 
queue theory) 

Developed a 
queuing model by 
analyzing a real 
queuing system 
with layout 
limitations in 
specific conditions 
and applying 
Markov chain 
concepts 

Akhlaghi & 
Rostamy-
Malkhalifeh, 
2019 [40] 

A linear programming DEA 
model for selecting a single 
efficient unit 

-    Linear 
programming 

Proposed a new LP 
model for finding 
the most BCC-
efficient DMU 
where the decision 
maker is able to 
find most BCC-
efficient DMU by 
solving only one LP 

Lotfi, 
Mardani, et 
al., 2021[41] 

Robust bi-level 
programming for renewable 
energy location 

Robust 
stochastic 

BLP  
 

Robust modeling 
addressed to cope 
with different 
scenarios and 
disruption in 
demand 

Lotfi, 
Kargar, et 
al., 2021[42] 

Resilience and sustainable 
supply chain network design 
by considering renewable 
energy 

Robust 
stochastic 

GAMS and fix-
and-opt  
 

Suggested a novel 
SCND that wants to 
pay more attention 
to resiliency and 
sustainability by 
considering RE 

Present 
study 

Application of Markov 
chains in manufacturing 
systems 

Stochastic  Markov chains As a basis for 
decision making, 
Markov Chain 
prediction method 
is no exception and 
a combination of 
results from using 
Markov Chain to 
predict with other 
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factors can be more 
useful. 

 
From the reviewed literature, there a number of uncertainties that affect the performance in 
manufacturing companies. From table 2 it is seen that system failure and repairs (45%) is the 
most researched nature of uncertainty affecting manufacturing, then market /customer 
requirements or demand (25%), inventory levels (5%), product quality (5%), and others (20%)  
It is also seen that both Discrete-Time Markov Chains (DTMC) and Continuous-time Markov 
Chains (CTMC) approaches are used although Discrete-Time Markov Chains was used more. 
 
4. Conclusion 
 
This paper has presented an extensive literature survey about the application of Markov chains 
in manufacturing systems. Markov chain is an established concept in operations research and 
probability theory and it has been applied to many areas in manufacturing including quality 
management, system performance (reliability & availability), supply chain, electronics, 
condition monitoring, queuing theory, economics, to mention but a few.  
As a basis for decision making, Markov Chain prediction method is no exception and a 
combination of results from using Markov Chain to predict with other factors can be more 
useful. 
More research should be done on development of models in the context of Continuous Time 
Markov Chains (CTMC) [5]. Models should further be developed to be applied for products 
having components and modules, the logistics operation behind the transition needs to be 
modeled so that the accuracy of the model is improved and, the economic aspects should be 
included in the model, to aid policymakers in making a comprehensive decision[23] .  
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